
Warp3D

Warp3D ii

COLLABORATORS

TITLE :

Warp3D

ACTION NAME DATE SIGNATURE

WRITTEN BY July 7, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Warp3D iii

Contents

1 Warp3D 1

1.1 Warp3D.doc . 1

1.2 Warp3D/W3D_AllocStencilBuffer . 3

1.3 Warp3D/W3D_AllocTexObj . 4

1.4 Warp3D/W3D_AllocZBuffer . 6

1.5 Warp3D/W3D_CheckDriver . 7

1.6 Warp3D/W3D_CheckIdle . 8

1.7 Warp3D/W3D_ClearStencilBuffer . 9

1.8 Warp3D/W3D_ClearZBuffer . 9

1.9 Warp3D/W3D_CreateContext . 10

1.10 Warp3D/W3D_DestroyContext . 12

1.11 Warp3D/W3D_DrawLine . 13

1.12 Warp3D/W3D_DrawLineLoop . 14

1.13 Warp3D/W3D_DrawLineStrip . 14

1.14 Warp3D/W3D_DrawPoint . 15

1.15 Warp3D/W3D_DrawTriangle . 16

1.16 Warp3D/W3D_DrawTriFan . 17

1.17 Warp3D/W3D_DrawTriStrip . 17

1.18 Warp3D/W3D_FillStencilBuffer . 18

1.19 Warp3D/W3D_Flush . 19

1.20 Warp3D/W3D_FlushFrame . 20

1.21 Warp3D/W3D_FlushTextures . 20

1.22 Warp3D/W3D_FreeAllTexObj . 21

1.23 Warp3D/W3D_FreeStencilBuffer . 21

1.24 Warp3D/W3D_FreeTexObj . 22

1.25 Warp3D/W3D_FreeZBuffer . 23

1.26 Warp3D/W3D_GetDestFmt . 24

1.27 Warp3D/W3D_GetDrivers . 25

1.28 Warp3D/W3D_GetDriverState . 25

1.29 Warp3D/W3D_GetDriverTexFmtInfo . 26

Warp3D iv

1.30 Warp3D/W3D_GetState . 27

1.31 Warp3D/W3D_GetTexFmtInfo . 28

1.32 Warp3D/W3D_Hint . 30

1.33 Warp3D/W3D_LockHardware . 31

1.34 Warp3D/W3D_Query . 31

1.35 Warp3D/W3D_QueryDriver . 34

1.36 Warp3D/W3D_ReadStencilPixel . 35

1.37 Warp3D/W3D_ReadStencilSpan . 36

1.38 Warp3D/W3D_ReadZPixel . 37

1.39 Warp3D/W3D_ReadZSpan . 37

1.40 Warp3D/W3D_ReleaseTexture . 38

1.41 Warp3D/W3D_RequestMode . 39

1.42 Warp3D/W3D_SetAlphaMode . 40

1.43 Warp3D/W3D_SetBlendMode . 41

1.44 Warp3D/W3D_SetColorMask . 42

1.45 Warp3D/W3D_SetCurrentColor . 43

1.46 Warp3D/W3D_SetCurrentPen . 44

1.47 Warp3D/W3D_SetDrawRegion . 44

1.48 Warp3D/W3D_SetDrawRegionWBM . 45

1.49 Warp3D/W3D_SetFilter . 46

1.50 Warp3D/W3D_SetFogParams . 47

1.51 Warp3D/W3D_SetLogicOp . 47

1.52 Warp3D/W3D_SetPenMask . 48

1.53 Warp3D/W3D_SetScissor . 49

1.54 Warp3D/W3D_SetState . 49

1.55 Warp3D/W3D_SetStencilFunc . 51

1.56 Warp3D/W3D_SetStencilOp . 52

1.57 Warp3D/W3D_SetTexEnv . 52

1.58 Warp3D/W3D_SetWrapMode . 54

1.59 Warp3D/W3D_SetWriteMask . 54

1.60 Warp3D/W3D_SetZCompareMode . 55

1.61 Warp3D/W3D_TestMode . 56

1.62 Warp3D/W3D_UnLockHardware . 57

1.63 Warp3D/W3D_UpdateTexImage . 57

1.64 Warp3D/W3D_UpdateTexSubImage . 59

1.65 Warp3D/W3D_UploadTexture . 60

1.66 Warp3D/W3D_WaitIdle . 61

1.67 Warp3D/W3D_WriteStencilPixel . 61

1.68 Warp3D/W3D_WriteStencilSpan . 62

1.69 Warp3D/W3D_WriteZPixel . 63

1.70 Warp3D/W3D_WriteZSpan . 64

Warp3D 1 / 65

Chapter 1

Warp3D

1.1 Warp3D.doc

W3D_AllocStencilBuffer()

W3D_AllocTexObj()

W3D_AllocZBuffer()

W3D_CheckDriver()

W3D_CheckIdle()

W3D_ClearStencilBuffer()

W3D_ClearZBuffer()

W3D_CreateContext()

W3D_DestroyContext()

W3D_DrawLine()

W3D_DrawLineLoop()

W3D_DrawLineStrip()

W3D_DrawPoint()

W3D_DrawTriangle()

W3D_DrawTriFan()

W3D_DrawTriStrip()

W3D_FillStencilBuffer()

W3D_Flush()

W3D_FlushFrame()

Warp3D 2 / 65

W3D_FlushTextures()

W3D_FreeAllTexObj()

W3D_FreeStencilBuffer()

W3D_FreeTexObj()

W3D_FreeZBuffer()

W3D_GetDestFmt()

W3D_GetDrivers()

W3D_GetDriverState()

W3D_GetDriverTexFmtInfo()

W3D_GetState()

W3D_GetTexFmtInfo()

W3D_Hint()

W3D_LockHardware()

W3D_Query()

W3D_QueryDriver()

W3D_ReadStencilPixel()

W3D_ReadStencilSpan()

W3D_ReadZPixel()

W3D_ReadZSpan()

W3D_ReleaseTexture()

W3D_RequestMode()

W3D_SetAlphaMode()

W3D_SetBlendMode()

W3D_SetColorMask()

W3D_SetCurrentColor()

W3D_SetCurrentPen()

W3D_SetDrawRegion()

W3D_SetDrawRegionWBM()

Warp3D 3 / 65

W3D_SetFilter()

W3D_SetFogParams()

W3D_SetLogicOp()

W3D_SetPenMask()

W3D_SetScissor()

W3D_SetState()

W3D_SetStencilFunc()

W3D_SetStencilOp()

W3D_SetTexEnv()

W3D_SetWrapMode()

W3D_SetWriteMask()

W3D_SetZCompareMode()

W3D_TestMode()

W3D_UnLockHardware()

W3D_UpdateTexImage()

W3D_UpdateTexSubImage()

W3D_UploadTexture()

W3D_WaitIdle()

W3D_WriteStencilPixel()

W3D_WriteStencilSpan()

W3D_WriteZPixel()

W3D_WriteZSpan()

1.2 Warp3D/W3D_AllocStencilBuffer

NAME
W3D_AllocStencilBuffer -- Allocate stencil buffer

SYNOPSIS
success = W3D_AllocStencilBuffer(context);
d0 a0

ULONG W3D_AllocStencilBuffer(W3D_Context *);

Warp3D 4 / 65

FUNCTION
Allocate a stencil buffer for the given context. For more
information on stencil buffering, see the OpenGL specs.

INPUTS
context - The context the stencil buffer is allocated on

RESULT
One of the following values:

W3D_SUCCESS The allocation was successful
W3D_NOGFXMEM No memory was left on the graphics board
W3D_NOSTENCILBUFFER Stencil buffering is not available

EXAMPLE

NOTES
Stencil buffering and the ViRGE: The ViRGE is not capable of stencil
buffering, it became a necessity later when hardware accelerators
started to support the OpenGL standard.

BUGS

SEE ALSO
W3D_FreeStencilBuffer

1.3 Warp3D/W3D_AllocTexObj

NAME
W3D_AllocTexObj -- Allocate a new texture object

SYNOPSIS
texture = W3D_AllocTexObj(context, error, ATOTags);
d0 a0 a1 a2

W3D_Texture *W3D_AllocTexObj(W3D_Context, ULONG *, struct TagItem *);

FUNCTION
Create a new texture object. Such a texture object contains
information about a texture in addition to the normal image data
that is displayed.

INPUTS
context - pointer to a W3D_Context
error - pointer to a ULONG, which will contain an error code,

or NULL if you do not want to get the error code.
ATOTags - pointer to a taglist. Supported tags are:

W3D_ATO_IMAGE (mandatory):
A pointer to the source texture image

W3D_ATO_FORMAT (mandatory):
The texture format of the source texture. Must be
one of the following values (check the include file
for more precise definition):
- W3D_CHUNKY
- W3D_A1R5G5B5
- W3D_R5G6B5

Warp3D 5 / 65

- W3D_R8G8B8
- W3D_A4R4G4B4
- W3D_A8R8G8B8
- W3D_R8G8B8A8
- W3D_A8
- W3D_L8
- W3D_L8A8
- W3D_I8

W3D_ATO_WIDTH (mandatory):
The width of the texture in pixels. Must
be 2^n.

W3D_ATO_HEIGHT (mandatory):
The height of the texture in pixels. Must
be 2^n.

W3D_ATO_MIPMAP (optional):
If specified, the texture can be used for mipmapping.
The value of this tag defines, which mipmap levels
have to be generated automatically. It should be set
so that the generated mipmaps and the provided ones
build a complete mipmap set.
The value is a bitmask with one specific bit
representing a mipmap level. Bit 0 corresponds to
level 1, Bit 1 to level 2, so Bit n to level n-1.
A value of 0 means, that all mipmaps are provided
by the application.
Note, that providing only a part of all mipmaps
which leave holes between the provided levels may
result in performance loss.

W3D_ATO_MIPMAPPTRS (mandatory for user-supplied mipmaps)
If W3D_ATO_MIPMAP is specified, mipmapping is used
for texturing. The mipmap mask specifies which of the
mipmaps will be created. With the W3D_ATO_MIPMAPPTRS tag,
an array of (void *) to the mipmaps you want to
supply yourself is defined. This array must be
NULL-Terminated
Example: You want to give only level 3 and 5, and
let W3D_AllocTexObj create the rest of the mipmaps.
Assume a 128x128 texture (7 mipmap levels)
Define an array like this:

void *mips[3];
mips[0] = (void *)level_3_map;
mips[1] = (void *)level_5_map;
mips[2] = NULL;

When calling W3D_AllocTexObj, you would give
W3D_ATO_MIPMAP the value 0x6B (binary 1101011)
W3D_ATO_MIPMAPPTRS would be mips.

W3D_ATO_PALETTE (mandatory for chunky textures):
Defines the palette which is necessary to handle
chunky textures. A pointer to a palette must be
provided. The palette itself is an array of
ULONG’s, and every ULONG defines the ARGB value
for one color index. Therefore the palette must
be 1024 bytes. (Note: On 8bit screens, this
palette *should* be the screen palette,
unless the driver returns TRUE on W3D_Q_PALETTECONV.)

RESULT

Warp3D 6 / 65

Either a pointer to the successfully created texture
object, or NULL, in which case the optional error variable
is set to one of the following values:

W3D_SUCCESS It worked!
W3D_ILLEGALINPUT Some information was invalid, maybe

a mandatory tag missing
W3D_NOMEMORY No memory was available
W3D_UNSOPPORTEDTEXSIZE The driver can‘t handle a texture

of the given size.
W3D_NOPALETTE The texture should be a chunky (CLUT)

texture, but no palette was given.
W3D_UNSUPPORTEDTEXFMT The format can not be used with the

current driver

EXAMPLE
extern W3D_Context *context;
void *image = LoadImage("texture.iff");
W3D_Texture *texobj;
struct TagItem tags[] = {

W3D_ATO_IMAGE, image,
W3D_ATO_FORMAT, W3D_A1R5G5B5,
W3D_ATO_WITDH, 128,
W3D_ATO_HEIGHT, 128,
TAG_DONE, 0

};
ULONG error;

texobj = W3D_AllocTexObj(context, &error, tags);
if (!texobj)

printf("An error has occurred because: An error has occurred (%d)\n",
error);

NOTES
The pointers to textures and mipmaps passed to this function are
considered ‘locked‘ until this texture object is released again,
or the image is updated with W3D_UpdateTexImage.
You may not free the memory.

BUGS

SEE ALSO
W3D_FreeTexObj, W3D_ReleaseTexture, W3D_UpdateTexImage,
W3D_FlushTextures, W3D_SetFilter, W3D_SetTexEnv, W3D_SetWrapMode
W3D_UploadTexture

1.4 Warp3D/W3D_AllocZBuffer

NAME
W3D_AllocZBuffer -- Allocate a ZBuffer

SYNOPSIS
result = W3D_AllocZBuffer(context);
d0 a0

Warp3D 7 / 65

ULONG W3D_AllocZBuffer(W3D_Context *);

FUNCTION
Allocates a ZBuffer. The size of the ZBuffer depends on the
size of the bitmap used with this context. The memory is allocated
on the graphics board.

INPUTS
context - pointer to the context to be used with the ZBuffer

RESULT
One of the following values:

W3D_SUCCESS The allocation was successful
W3D_NOGFXMEM Not enough video memory
W3D_NOZBUFFER ZBuffering is not available on this hardware
W3D_NOTVISIBLE - The bitmap is not visible/swapped out of vmem

EXAMPLE
ULONG error, status;
struct BitMap myBitMap;
struct TagItem taglist[] = {

W3D_CC_BITMAP, (ULONG)&myBitMap,
W3D_CC_YOFFSET, 0,
W3D_CC_DRIVERTYPE, W3D_DRIVER_BEST

};
W3D_Context *context;

InitBitMap(&myBitMap, 15, 640, 480);
createPlanes(&myBitMap);
context = W3D_CreateContext(&error, taglist);
status = W3D_AllocZBuffer(context);

NOTES
This function should be called before textures are uploaded to
the graphics board, to avoid fragmentation of video memory.

BUGS

SEE ALSO
W3D_FreeZBuffer

1.5 Warp3D/W3D_CheckDriver

NAME
W3D_CheckDriver -- Check driver availability

SYNOPSIS
flags = W3D_CheckDriver();
d0

ULONG W3D_CheckDriver(void);

FUNCTION
Checks what driver is available (CPU/HW), and returns it
as a bit mask.

Warp3D 8 / 65

INPUTS
None

RESULT
A long word that has it‘s bit set accordingly:

W3D_DRIVER_3DHW - A hardware driver is available
W3D_DRIVER_CPU - A software driver is available

EXAMPLE
ULONG flags = W3D_CheckDriver();
if (flags & W3D_DRIVER_3DHW) printf("Hardware driver available\n");
if (flags & W3D_DRIVER_CPU) printf("Software driver available\n");

NOTES
This function can be called without a valid context. It can
be used to evaluate the possibilities the system is offering.
Note though, that you should give the user a chance to get into
your program, even if you think it would be too slow without
hardware acceleration...

BUGS

SEE ALSO

1.6 Warp3D/W3D_CheckIdle

NAME
W3D_CheckIdle -- check if hardware is working

SYNOPSIS
working = W3D_CheckIdle(context);
d0 a0

ULONG W3D_CheckIdle(W3D_Context *);

FUNCTION
Check if the hardware is finished with it‘s current operation.

INPUTS
context - a pointer to a W3D_Context

RESULT
One of to values indicating busy/idle state:

W3D_SUCCESS - The hardware is idle
W3D_BUSY - The hardware is still working

EXAMPLE

NOTES
This function is not very useful for applications.

BUGS

SEE ALSO

Warp3D 9 / 65

W3D_WaitIdle

1.7 Warp3D/W3D_ClearStencilBuffer

NAME
W3D_ClearStencilBuffer -- Clear the stencil buffer

SYNOPSIS
success = W3D_ClearStencilBuffer(context, clearval);
d0 a0 a1

ULONG W3D_ClearStencilBuffer(W3D_Context *, ULONG *);

FUNCTION
Clear the stencil buffer (fill it up) with the value
pointed to by clearval.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - the context to work on
clearval - pointer to a value used for clearing

RESULT
One of the following:

W3D_SUCCESS Operation was successful
W3D_NOSTENCILBUFFER Stencil buffer not present (not allocated,

or not supported by driver)
W3D_NOTVISIBLE The stencil buffer can not be accessed by

the hardware
W3D_QUEUEFAILED In indirect mode only. Queueing this request

failed

EXAMPLE

NOTES

BUGS

SEE ALSO
W3D_AllocStencilBuffer, W3D_FreeStencilBuffer

1.8 Warp3D/W3D_ClearZBuffer

NAME
W3D_ClearZBuffer -- Clear the ZBuffer with a given value

SYNOPSIS
success = W3D_ClearZBuffer(context, clearvalue);
d0 a0 a1

ULONG W3D_ClearZBuffer(W3D_Context *, W3D_Double *);

Warp3D 10 / 65

FUNCTION
Clear the ZBuffer with a given value.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - pointer to the context
clearvalue - pointer to a W3D_Double, ranging from [0..1].

If NULL, 0.0 is used

RESULT
One of the following values:

W3D_SUCCESS operation successful
W3D_NOZBUFFER No ZBuffer was allocated
W3D_NOTVISIBLE The ZBuffer was not in video ram
W3D_QUEUEFAILED In indirect mode only. Queueing this request

failed

EXAMPLE

NOTES

BUGS

SEE ALSO
W3D_AllocZBuffer, W3D_FreeZBuffer

1.9 Warp3D/W3D_CreateContext

NAME
W3D_CreateContext -- Create a new Warp3D context

SYNOPSIS
context = W3D_CreateContext(&error, CCTags);
D0 A0 A1

W3D_Context *W3D_CreateContext(ULONG *, struct TagItem *);

FUNCTION
This function creates a new Warp3D context, which is required by most
other API functions as first parameter.

The number of open contexts is not limited. Full multitasking capabilities
are provided.

INPUTS
error - A pointer to a ULONG which gets the error value,

or NULL if you don‘t want an error code returned
CCTags - A taglist containing various input parameters:

W3D_CC_MODEID (special):
Specifies the ModeID of the screen you opened or
intend to open, or generally the ModeID of the drawing
area you intend to use. If you plan to use Warp3D in
windowed mode, you may leave this tag unset. Otherwise,

Warp3D 11 / 65

the tag MUST be set correctly, as the ModeID is used to
extract the required hardware.

W3D_CC_BITMAP (mandatory):
A pointer to the bitmap which is used for 3D drawing.
For 3DHW drivers, the bitmap must absolutely be located
in video memory (it may be swapped out at the moment).
For CPU drivers, it doesn’t matter, where the bitmap is
located. Note, that CPU drivers might use FAST-RAM
buffers for intermediate results to speed up rendering,
therefore bitmaps in FAST-RAM might not be optimal in
this case.
Also note, that never bitmaps should be provided which
are directly visible!

W3D_CC_YOFFSET (mandatory):
A vertical offset, which defines, at which Y-Position
the drawing area starts. This can be used to achieve
multibuffering using the ScrollVPort trick, which might
be the only possibility to achieve proper multibuffering
with some graphics interface software.

W3D_CC_DRIVERTYPE (mandatory):
A constant which defines what type of driver should
be used (use the API function W3D_CheckDriver to get
more information about the drivers). Possible values
are:
- W3D_DRIVER_BEST the best driver is chosen
- W3D_DRIVER_3DHW the hardware driver is chosen,

if none is present, NULL is
returned

- W3D_DRIVER_CPU the software driver is chosen,
if none is present, NULL is
returned

W3D_CC_W3DBM (optional):
Boolean tag. If this is set to TRUE, the W3D_CC_BITMAP
tag doesn’t point to a struct BitMap. Instead, it points
to a Warp3D bitmap (of type W3D_Bitmap), which might
be in fast-ram (for CPU rendering). Note that the
W3D_CC_YOFFSET tag is ignored if W3D_CC_W3DBM is set
to TRUE.

W3D_CC_INDIRECT (optional):
Boolean tag. If set to TRUE, then all drawing actions are
possibly not performed directly, but are queued until
the buffer is full, or W3D_Flush is called, or the
indirect state is switched off with W3D_SetState

W3D_CC_GLOBALTEXENV (optional):
Boolean tag. If set to TRUE, calls to SetTexEnv do not
modify the given texture, but are used for all textures.

W3D_CC_DOUBLEHEIGHT (optional):
Boolean tag. This tag should be set to TRUE if the drawing
area is a double height screen. Double height screens
may be used for double buffering with CyberGraphX.

W3D_CC_FAST: (optional):
Boolean tag. If set to TRUE, drawing functions are allowed
to modify the passed structures.

RESULT
A pointer to a newly created context structure, or NULL for failure.

Warp3D 12 / 65

If an error variable was provided, the error value is filled in.
It may be one of the following values:

W3D_SUCCESS - Operation was successful
W3D_ILLEGALINPUT - Illegal input, maybe a left out tag item
W3D_NOMEMORY - Unable to get enough memory
W3D_NODRIVER - No driver was available
W3D_UNSUPPORTEDFMT - The supplied bitmap can‘t be supported
W3D_ILLEGALBITMAP - The bitmap is not properly initialised

EXAMPLE
ULONG error;
struct BitMap myBitMap;
struct TagItem taglist[] = {

W3D_CC_BITMAP, (ULONG)&myBitMap,
W3D_CC_YOFFSET, 0,
W3D_CC_DRIVERTYPE, W3D_DRIVER_BEST

};
W3D_Context *context;

InitBitMap(&myBitMap, 15, 640, 480);
createPlanes(&myBitMap);
context = W3D_CreateContext(&error, taglist);

NOTES
An error of type W3D_UNSUPPORTEDFMT is returned if a W3D_Bitmap
is given as drawregion and no CPU driver is available, or
a HW driver is also requested.

BUGS

SEE ALSO
W3D_DestroyContext, W3D_Flush, W3D_SetState

1.10 Warp3D/W3D_DestroyContext

NAME
W3D_DestoryContext -- Release a Warp3D context

SYNOPSIS
W3D_DestoryContext(context);

A0

void W3D_DestroyContext(W3D_Context *);

FUNCTION
This function frees up all resources for the given context,
destroying it.

INPUTS
context - Pointer to a Warp3D context

RESULT
None

EXAMPLE

Warp3D 13 / 65

W3D_Context *context;
...
context = W3D_CreateContext(.....);
...
W3D_DestroyContext(context);

NOTES
Always release contexts. Even if the memory loss doesn’t kill you,
the hardware may be blocked.

BUGS

SEE ALSO
W3D_CreateContext

1.11 Warp3D/W3D_DrawLine

NAME
W3D_DrawLine -- Draw a three-dimensional line

SYNOPSIS
success = W3D_DrawLine(context, line);
d0 a0 a1

ULONG W3D_DrawLine(W3D_Context *, W3D_Line *);

FUNCTION
This function draws a line based on the current state.
It may only be used while the hardware is locked, except when
indirect drawing is used.

INPUTS
context - The context to be drawn in
line - Definition of a line.

RESULT
A value inidcating success or failure. One of the following:

W3D_SUCCESS (you guessed it!)
W3D_NOTEXTURE The line has no texture
W3D_TEXNOTRESIDENT The required texture is not in video ram
W3D_NOGFXMEM No memory available on the graphics card
W3D_NOTVISIBLE The drawing area is not visible
W3D_NOZBUFFER No ZBuffer
W3D_QUEUEFAILED The request can’t be queued in indirect mode

EXAMPLE

NOTES
The linewidth parameter will probably not be supported
by most 3D hardware.

BUGS

SEE ALSO

Warp3D 14 / 65

1.12 Warp3D/W3D_DrawLineLoop

NAME
W3D_DrawLineLoop -- Draw a closed sequence of connected lines (V2)

SYNOPSIS
success = W3D_DrawLineLoop(context, lines);
d0 a0 a1

ULONG W3D_DrawLineLoop(W3D_Context *, W3D_Lines *);

FUNCTION
This function draws a connected sequence of lines, similar to
the W3D_DrawLineStrip function. The only difference is that the
last vertex is connected to the first with a line segment, too,
meaning that the vertexcount lines are drawn.

INPUTS
context - pointer to the context.
lines - pointer to the W3D_Lines (not the trailing ’s’)

structure defining the line strip.

RESULT
One of the following:

W3D_SUCCESS It worked.
W3D_NOTEXTURE No texture given
W3D_TEXNOTRESIDENT The texture is not on the graphics board‘s memory
W3D_NOTVISIBLE The drawing area is not visible
W3D_NOZBUFFER No ZBuffer present, although it has been requested
W3D_ILLEGALINPUT Fewer than two vertices were given
W3D_QUEUEFAILED The request can’t be queued in indirect mode

EXAMPLE

NOTES

BUGS
Currently, this call is not queued.

SEE ALSO
W3D_DrawLineLoop, W3D_DrawLine

1.13 Warp3D/W3D_DrawLineStrip

NAME
W3D_DrawLineStrip -- Draw a sequence of connected lines (V2)

SYNOPSIS
success = W3D_DrawLineStrip(context, lines);
d0 a0 a1

ULONG W3D_DrawLineStrip(W3D_Context *, W3D_Lines *);

FUNCTION

Warp3D 15 / 65

Draws a sequence of connected lines (a line strip). The first
line is defined by vertices 0 and 1, the second line by vertices
1 and 2, ..., up to the last line being defined by vertices
n-1 and n, with n being the vertexcount field from the W3D_Lines
structure.

INPUTS
context - pointer to the context.
lines - pointer to the W3D_Lines (not the trailing ’s’)

structure defining the line strip.

RESULT
One of the following:

W3D_SUCCESS It worked.
W3D_NOTEXTURE No texture given
W3D_TEXNOTRESIDENT The texture is not on the graphics board‘s memory
W3D_NOTVISIBLE The drawing area is not visible
W3D_NOZBUFFER No ZBuffer present, although it has been requested
W3D_ILLEGALINPUT Fewer than two vertices were given
W3D_QUEUEFAILED The request can’t be queued in indirect mode

EXAMPLE

NOTES

BUGS
Currently, this call is not queued.

SEE ALSO
W3D_DrawLineLoop, W3D_DrawLine

1.14 Warp3D/W3D_DrawPoint

NAME
W3D_DrawPoint -- Draw a point

SYNOPSIS
success = W3D_DrawPoint(context, point);
d0 a0 a1

ULONG W3D_DrawPoint(W3D_Context *, W3D_Point *);

FUNCTION
Draw a point based on the current context
It may only be used while the hardware is locked, except when
indirect drawing is used.

INPUTS
context - a pointer to the context to draw with
point - a pointer to a filled W3D_Point

RESULT
One of the following:

W3D_SUCCESS It worked.
W3D_NOTEXTURE No texture given

Warp3D 16 / 65

W3D_TEXNOTRESIDENT The texture is not on the graphics board‘s memory
W3D_NOTVISIBLE The drawing area is not visible
W3D_NOZBUFFER No ZBuffer present, although it has been requested
W3D_QUEUEFAILED The request can’t be queued in indirect mode

EXAMPLE

NOTES
The pointsize parameter will probably not be supported by most
3D hardware.

Although the vertex has it’s own color, the GOURAUD shading state
must be enabled to use this color, otherwise the current color set
by W3D_SetCurrentColor/W3D_SetCurrentPen will be used.

BUGS

SEE ALSO

1.15 Warp3D/W3D_DrawTriangle

NAME
W3D_DrawTriangle -- Draw a triangle

SYNOPSIS
success = W3D_DrawTriangle(context, triangle);
d0 a0 a1

ULONG W3D_DrawTriangle(W3D_Context *, W3D_Triangle *);

FUNCTION
Draw a triangle to the given context, based on that context‘s
state.
It may only be used while the hardware is locked, except when
indirect drawing is used.

INPUTS
context - the context to be drawn to
triangle - the triangle to be drawn

RESULT
One of the following:

W3D_SUCCESS It worked.
W3D_NOTEXTURE No texture given
W3D_TEXNOTRESIDENT The texture is not on the graphics board‘s memory
W3D_NOTVISIBLE The drawing area is not visible
W3D_NOZBUFFER No ZBuffer present, although it has been requested
W3D_QUEUEFAILED The request can’t be queued in indirect mode

EXAMPLE

NOTES

BUGS

Warp3D 17 / 65

SEE ALSO
W3D_DrawTriFan, W3D_DrawTriStrip

1.16 Warp3D/W3D_DrawTriFan

NAME
W3D_DrawTriFan -- Draw a triangle fan

SYNOPSIS
success = W3D_DrawTriFan(context, triangles);
d0 a0 a1

ULONG W3D_DrawTriFan(W3D_Context *, W3D_Triangles *);

FUNCTION
Draw a triangle fan. The first vertex in the list is
considered the common point for the fan. For more
information on triangle fans, see the OpenGL specs.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - pointer to the context.
triangles - pointer to a vertex list. Note that this

is a W3D_Triangles (trailing s, avoid mixing
up with W3D_Traingle)

RESULT
One of the following:

W3D_SUCCESS It worked.
W3D_NOTEXTURE No texture given
W3D_TEXNOTRESIDENT The texture is not on the graphics board‘s memory
W3D_NOTVISIBLE The drawing area is not visible
W3D_NOZBUFFER No ZBuffer present, although it has been requested
W3D_ILLEGALINPUT Less than three vertices were given
W3D_QUEUEFAILED The request can’t be queued in indirect mode

EXAMPLE

NOTES

BUGS

SEE ALSO
W3D_DrawTriangle, W3D_DrawTriStrip

1.17 Warp3D/W3D_DrawTriStrip

NAME
W3D_DrawTriStrip -- Draw a triangle strip

SYNOPSIS

Warp3D 18 / 65

success = W3D_DrawTriStrip(context, triangles);
d0 a0 a1

ULONG W3D_DrawTriStrip(W3D_Context *, W3D_Triangles *);

FUNCTION
Draw a triangle strip. For more information
on triangle strips, see the OpenGL specs.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - pointer to the context.
triangles - pointer to a vertex list. Note that this

is a W3D_Triangles (trailing s, avoid mixing
up with W3D_Traingle)

RESULT
One of the following:

W3D_SUCCESS It worked.
W3D_NOTEXTURE No texture given
W3D_TEXNOTRESIDENT The texture is not on the graphics board‘s memory
W3D_NOTVISIBLE The drawing area is not visible
W3D_NOZBUFFER No ZBuffer present, although it has been requested
W3D_ILLEGALINPUT Less than three vertices were given
W3D_QUEUEFAILED The request can’t be queued in indirect mode

EXAMPLE

NOTES

BUGS

SEE ALSO
W3D_DrawTriangle, W3D_DrawTriFan

1.18 Warp3D/W3D_FillStencilBuffer

NAME
W3D_FillStencilBuffer -- Fill the stencil buffer

SYNOPSIS
success = W3D_FillStencilBuffer(context, x, y, width, height, depth, data);
d0 a0 d0 d1 d2 d3 d4 a1

ULONG W3D_FillStencilBuffer(W3D_Context *, ULONG, ULONG, ULONG, ULONG,
ULONG, void *);

FUNCTION
This function fills the stencil buffer with a rectangular image
with the given dimensions.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS

Warp3D 19 / 65

context - the context
x,y - Coordinates into the stencil buffer
width - Width of the image data
height - Height of the image data
depth - Depth of the image data. Must be 8,16 or 32
data - The data itself

RESULT
One of the following values:

W3D_SUCCESS Operation successful
W3D_NOSTENCILBUFFER No stencil buffer present (either it‘s not

allocated, or not supported)
W3D_ILLEGALINPUT Illegal depth value
W3D_NOTVISIBLE The stencil buffer can not be accessed by

the hardware

EXAMPLE

NOTES

BUGS

SEE ALSO
W3D_CreateStencilBuffer, W3D_ClearStencilBuffer

1.19 Warp3D/W3D_Flush

NAME
W3D_Flush -- Flush indirect drawing queue

SYNOPSIS
result = W3D_Flush(context);

a0

ULONG W3D_Flush(W3D_Context *);

FUNCTION
If the given context is not in indirect mode, nothing happens.
Otherwise, the internal queue is flushed and all buffered drawing
request are drawn.

INPUTS
context - the context which should be flushed

RESULT
A value indicating error or success:

W3D_SUCCESS success
W3D_NOTVISIBLE Locking the hardware was unsuccesful

EXAMPLE

NOTES

BUGS

Warp3D 20 / 65

SEE ALSO
W3D_SetState, W3D_CreateContext, W3D_LockHardware, W3D_UnLockHardware

1.20 Warp3D/W3D_FlushFrame

NAME
W3D_FlushFrame -- Flush the current frame

SYNOPSIS
W3D_FlushFrame(context);

a0

void W3D_FlushFrame(W3D_Context*);

FUNCTION
This function flushes the current frame. It must be called at the end
of your drawing when the frame is finished. This function *must* be
called by any application, even if you do not "intent" to support
CPU drivers (for which this function is mainly designed).

INPUTS
context - The context to flush

RESULT

EXAMPLE

NOTES
If the context is indirect, this function also flushes the
Queue.

BUGS

SEE ALSO

1.21 Warp3D/W3D_FlushTextures

NAME
W3D_FlushTextures -- Release all textures from video ram

SYNOPSIS
W3D_FlushTextures(context);

a0

void W3D_FlushTextures(W3D_Context);

FUNCTION
This function releases every texture that‘s currently
on the graphics board‘s texture memory.

INPUTS
context - Pointer to a W3D_Context

Warp3D 21 / 65

RESULT
None

EXAMPLE

NOTES

BUGS

SEE ALSO
W3D_ReleaseTexture

1.22 Warp3D/W3D_FreeAllTexObj

NAME
W3D_FreeAllTexObj -- Free all textures in context

SYNOPSIS
W3D_FreeAllTexObj(context);

a0

void W3D_FreeTexObj(W3D_Context *);

FUNCTION
Free all texture objects allocated in the current context.

INPUTS
context - the pointer to the context

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO
W3D_FreeTexObj, W3D_AllocTexObj

1.23 Warp3D/W3D_FreeStencilBuffer

NAME
W3D_FreeStencilBuffer -- Free the stencil buffer

SYNOPSIS
success = W3D_FreeStencilBuffer(context);
d0 a0

ULONG W3D_FreeStencilBuffer(W3D_Context *);

Warp3D 22 / 65

FUNCTION
Free up all memory associated with the stencil buffer.

INPUTS
context - the context containing the stencil buffer to be freed

RESULT
One of the following values:

W3D_SUCCESS Operation succesful
W3D_NOSTENCILBUFFER No stencil buffer was allocated, or stencil

buffering is not supported by the current
hardware driver.

W3D_NOTVISIBLE The stencil buffer can not be accessed by
the hardware

EXAMPLE

NOTES

BUGS

SEE ALSO
W3D_CreateStencilBuffer

1.24 Warp3D/W3D_FreeTexObj

NAME
W3D_FreeTexObj -- Free a texture object

SYNOPSIS
W3D_FreeTexObj(context, texture);

a0 a1

void W3D_FreeTexObj(W3D_Context *, W3D_Texture *);

FUNCTION
Remove the texture object from the list of textures
and free up all resources associated with it.

INPUTS
context - Pointer to a W3D_Context
texture - Pointer to a texture to be released

RESULT
None

EXAMPLE
extern W3D_Context *context;
void *image = LoadImage("texture.iff");
W3D_Texture *texobj;
struct TagItem tags[] = {

W3D_ATO_IMAGE, image,
W3D_ATO_FORMAT, W3D_A1R5G5B5,
W3D_ATO_WITDH, 128,
W3D_ATO_HEIGHT, 128,

Warp3D 23 / 65

TAG_DONE, 0
};
ULONG error;

texobj = W3D_AllocTexObj(context, &error, tags);
if (!texobj) {

printf("An error has occurred because: An error has occurred (%d)\n",
error);

} else {
... Draw some cool stuff ...
W3D_FreeTexObj(context, texobj);

NOTES
Free all textures. Even if you can afford the memory loss in main memory,
you‘ll loose video memory.
The ‘locked‘ pointers (those to the image and user-defined mipmaps)
are now ‘unlocked‘, and may be used again.

BUGS

SEE ALSO
W3D_AllocTexObj

1.25 Warp3D/W3D_FreeZBuffer

NAME
W3D_FreeZBuffer -- Free ZBuffer

SYNOPSIS
success = W3D_FreeZBuffer(context);
d0 a0

ULONG W3D_FreeZBuffer(W3D_Context *);

FUNCTION
Free the ZBuffer previously allocated with W3D_AllocZBuffer

INPUTS
context - Pointer to a W3D_Context

RESULT
One of the following values:

W3D_SUCCESS Success
W3D_NOZBUFFER No Z Buffer was allocated
W3D_NOTVISIBLE ZBuffer is not visible

EXAMPLE

NOTES

BUGS

SEE ALSO

Warp3D 24 / 65

W3D_AllocZBuffer

1.26 Warp3D/W3D_GetDestFmt

NAME
W3D_GetDestFmt -- Get information about supported formats

SYNOPSIS
format = W3D_GetDestFmt();
d0

ULONG W3D_GetDestFmt(void);

FUNCTION

DEPRECATED DO NOT USE THIS IN NEW PROJECTS
This function can be used to get information about the destination
(i.e. screen) format supported by the current driver. The result
is a bitmask, with each bit representing a supported format.
This function can be used before opening a display, to ensure
that only a supported display area is selected.

INPUTS
None

RESULT
A bitmask representing supported modes. Currently, some of the
following bits:

W3D_FMT_CLUT
W3D_FMT_R5G5B5
W3D_FMT_B5G5R5
W3D_FMT_R5G5B5PC
W3D_FMT_B5G5R5PC
W3D_FMT_R5G6B5
W3D_FMT_B5G6R5
W3D_FMT_R5G6B5PC
W3D_FMT_B5G6R5PC
W3D_FMT_R8G8B8
W3D_FMT_B8G8R8
W3D_FMT_A8R8G8B8
W3D_FMT_A8B8G8R8
W3D_FMT_R8G8B8A8
W3D_FMT_B8G8R8A8

EXAMPLE
ULONG fmt = W3D_GetDestFmt();

if (fmt & W3D_FMT_CLUT) printf("Driver supports 8 bit modes\n");
if (fmt & W3D_R5G5B5) printf("Driver supports 15 bit RGB modes\n");

NOTES
This function is deprecated and should not be used in future
projects.

BUGS

Warp3D 25 / 65

SEE ALSO
W3D_CreateContext, W3D_Query, W3D_GetDrivers

1.27 Warp3D/W3D_GetDrivers

NAME
W3D_GetDrivers -- Get the internal list of drivers (V2)

SYNOPSIS
driverarray = W3D_GetDrivers();

D0

W3D_Driver **W3D_GetDrivers(void);

FUNCTION
This function returns a (NULL-Terminated) Array of pointers
to W3D_Driver structures. You can use these to find a suitable
driver, offer the user a selection of hardware, or activate
one driver for further queries.

INPUTS

RESULT
driverarray - A null-terminated array of pointers to

W3D_Driver structures.

EXAMPLE

NOTES
The returned list is STRICTLY read-only.

BUGS

SEE ALSO
W3D_TestMode

1.28 Warp3D/W3D_GetDriverState

NAME
W3D_GetDriverState -- get current state of driver

SYNOPSIS
result = W3D_GetDriverState(context);
d0 a0

ULONG W3D_GetDriverState(W3D_Context *);

FUNCTION
Return information about the current state of the driver.
This function can be used to check if the current driver
is able to start rendering now.

Warp3D 26 / 65

INPUTS
context - The context to check the state for

RESULT
One of the following values:

W3D_SUCCESS Success, rendering possible
W3D_NOTVISIBLE Drawing area is not currently on

the video card’s memory.

EXAMPLE
if (W3D_SUCCESS == W3D_GetDriverState(context)

RenderFrame();
else

printf("Error: Bitmap not visible, can’t render\n");

NOTES

BUGS

SEE ALSO
W3D_LockHardware

1.29 Warp3D/W3D_GetDriverTexFmtInfo

NAME
W3D_GetDriverTexFmtInfo -- Get information about the texture format (V2)

SYNOPSIS
info = W3D_GetDriverTexFmtInfo(driver, format, destfmt);
d0 a0 d0 d1

ULONG W3D_GetDriverTexInfo(W3D_Driver*, ULONG, ULONG);

FUNCTION
This function is used to get information about the texture
format, i.e. if it‘s directly supported by the hardware,
or must be converted in some way. Contrary to the similar
function W3d_GetTexFmtInfo, this function does not need a
context to operate, but can be used to query individual drivers
about their texture format capabilities.

INPUTS
driver - A pointer to a W3D_Driver structure
texfmt - The texture format to be queried. Currently,

one of the following:
W3D_CHUNKY palettized
W3D_A1R5G5B5 a rrrrr ggggg bbbbb
W3D_R5G6B5 rrrrr gggggg bbbbb
W3D_R8G8B8 rrrrrrrr gggggggg bbbbbbbb
W3D_A4R4G4B4 aaaa rrrr gggg bbbb
W3D_A8R8G8B8 aaaaaaaa rrrrrrrr gggggggg bbbbbbbb
W3D_R8G8B8A8 rrrrrrrr gggggggg bbbbbbbb aaaaaaaa
W3D_A8 aaaaaaaa
W3D_L8 llllllll
W3D_L8A8 llllllll aaaaaaaa

Warp3D 27 / 65

W3D_I8 iiiiiiii
See the main documentation for more information.

destfmt - The destination screen format.

RESULT
A bitvector with the following bits

W3D_TEXFMT_FAST Format directly supported by HW
W3D_TEXFMT_CLUTFAST Format directly supported in CLUT modes only
W3D_TEXFMT_ARGBFAST Format directly supported in direct color

modes only
W3D_TEXFMT_UNSUPPORTED Format not supported, and can’t be emulated
W3D_TEXFMT_SUPPORTED Format is supported, although it may be

internally converted

EXAMPLE

NOTES
Formats that are not directly supported can still be used for textures.
Note, however, that those textures must be converted.

BUGS

SEE ALSO

W3D_GetTexFmtInfo()

1.30 Warp3D/W3D_GetState

NAME
W3D_GetState -- Get current state of hardware/context

SYNOPSIS
result = W3D_GetState(context, state);
d0 a0 d0

ULONG W3D_GetState(W3D_Context *, ULONG);

FUNCTION
This function reads the state of the bits in the
state field of the context structure.

INPUTS
context - pointer to a Warp3D context
state - The bit that is tested. Currently, this may

be one of the following:
W3D_AUTOTEXMANAGEMENT automatic texture management
W3D_SYNCHRON wait, until HW is idle
W3D_INDIRECT buffer drawings until W3D_Flush()’ed
W3D_GLOBALTEXENV global texture modes
W3D_DOUBLEHEIGHT screen has double height.
W3D_FAST Drawing functions may modify passed ←↩

stru
ctures

W3D_TEXMAPPING texmapping state

Warp3D 28 / 65

W3D_PERSPECTIVE perspective correction state
W3D_GOURAUD gouraud/flat shading
W3D_ZBUFFER Z-Buffer state
W3D_ZBUFFERUPDATE Z-Buffer update state
W3D_BLENDING Alpha blending state
W3D_FOGGING Fogging state
W3D_ANTI_POINT Point antialiasing
W3D_ANTI_LINE Line antialiasing
W3D_ANTI_POLYGON Polygon antialiasing
W3D_ANTI_FULLSCREEN Fullscreen antialiasing
W3D_DITHERING dithering state
W3D_LOGICOP logical operations state
W3D_STENCILBUFFER stencil buffer state
W3D_ALPHATEST Alpha test state
W3D_SPECULAR Specular highlightung state
W3D_TEXMAPPING3D 3D texturemapping state

RESULT
One of the following:

W3D_ENABLED the mode is enabled
W3D_DISABLED the mode is disabled/not available

EXAMPLE
if (W3D_ENABLED == W3D_GetState(context, W3D_FOGGING)) {

printf("Gee, I can‘t see in all this fog\n");
} else {

printf("Aha, that‘s better\n");
}

NOTES
Don’t use W3D_SYNCHRON, this state might only be useful for
debugging purposes.

The W3D_FAST mode can speed up your application, always use it,
if you don’t care what happens to the values in the drawing
structures (like W3D_Triangle, W3D_Line etc.)

’Indirect drawing’ has the advantage, that the ’locking’ time
is minimized, please provide at least an option for the user to
use it.

For more information about the different states, please refer
to the Warp3D Programmer Documentation.

BUGS

SEE ALSO
W3D_SetState

1.31 Warp3D/W3D_GetTexFmtInfo

NAME
W3D_GetTexFmtInfo -- Get information about the texture format

SYNOPSIS

Warp3D 29 / 65

info = W3D_GetTexFmtInfo(context, format, destfmt);
d0 a0 d0 d1

ULONG W3D_GetTexInfo(W3D_Context, ULONG, ULONG);

FUNCTION
This function is used to get information about the texture
format, i.e. if it‘s directly supported by the hardware,
or must be converted in some way.

INPUTS
context - A valid context pointer
texfmt - The texture format to be queried. Currently,

one of the following:
W3D_CHUNKY palettized
W3D_A1R5G5B5 a rrrrr ggggg bbbbb
W3D_R5G6B5 rrrrr gggggg bbbbb
W3D_R8G8B8 rrrrrrrr gggggggg bbbbbbbb
W3D_A4R4G4B4 aaaa rrrr gggg bbbb
W3D_A8R8G8B8 aaaaaaaa rrrrrrrr gggggggg bbbbbbbb
W3D_R8G8B8A8 rrrrrrrr gggggggg bbbbbbbb aaaaaaaa
W3D_A8 aaaaaaaa
W3D_L8 llllllll
W3D_L8A8 llllllll aaaaaaaa
W3D_I8 iiiiiiii

See the main documentation for more information.
destfmt - The destination screen format.

RESULT
A bitvector with the following bits

W3D_TEXFMT_FAST Format directly supported by HW
W3D_TEXFMT_CLUTFAST Format directly supported in CLUT modes only
W3D_TEXFMT_ARGBFAST Format directly supported in direct color

modes only
W3D_TEXFMT_UNSUPPORTED Format not supported, and can’t be emulated
W3D_TEXFMT_SUPPORTED Format is supported, although it may be

internally converted

EXAMPLE
ULONG info = W3D_GetTexFmtInfo(NULL, W3D_CHUNKY, W3D_FMT_CLUT);
if (info & W3D_TEXFMT_CLUTFAST) printf("Supported in CLUT modes\n");

NOTES
Formats that are not directly supported can still be used for textures.
Note, however, that those textures must be converted.

IMPORTANT: Prior to Version 2 of the API, this function could be
called with a NULL context to query the default driver. Although this
is still possible for backward compatibility reasons, a programmer
must not use this feature in new projects, but rather use the new and
improved

W3D_GetDriverTexFmtInfo()
function instead, which is essential

for multiple driver support. You may still call this function with a
valid context, of course.

BUGS

Warp3D 30 / 65

SEE ALSO

W3D_GetDriverTexFmtInfo()

1.32 Warp3D/W3D_Hint

NAME
W3D_Hint -- Hint about rendering quality

SYNOPSIS
result = W3D_Hint(context, mode, quality);
d0 a0 d0 d1

ULONG W3D_Hint(W3D_Context, ULONG, ULONG);

FUNCTION
Gives Warp3D a hint about the desired quality of some
effects. This can be used to improve rendering speed
at the cost of display quality.

INPUTS
context - The context to hint for
mode - The mode to hint for. One of the following values

W3D_H_TEXMAPPING - quality of general texmapping
W3D_H_MIPMAPPING - quality of mipmapping
W3D_H_BILINEARFILTER - quality of bilinear filtering
W3D_H_MMFILTER - quality of depth filter
W3D_H_PERSPECTIVE - quality of perspective correction
W3D_H_BLENDING - quality of alpha blending
W3D_H_FOGGING - quality of fogging
W3D_H_ANTIALIASING - quality of antialiasing
W3D_H_DITHERING - quality of dithering
W3D_H_ZBUFFER - quality of ZBuffering

quality - The desired quality. Possible values are
W3D_H_FAST - fast, low quality
W3D_H_AVERAGE - average speed, average quality
W3D_H_NICE - low speed, high quality

RESULT
A value indicating success or failure:

W3D_SUCCESS Success
W3D_ILLEGALINPUT Failure, illegal input

EXAMPLE

NOTES
This function only gives hints to Warp3D. It is possible
that it doesn’t do anything at all, depending on the
possibility the hardware or driver offers.

BUGS
The ViRGE driver selects it‘s filter modes when they are set

Warp3D 31 / 65

with W3D_SetFilter, so you have to set the filter modes again
when messing with the W3D_H_BILINEARFILTER setting.

SEE ALSO

1.33 Warp3D/W3D_LockHardware

NAME
W3D_LockHardware -- Gain exclusive hardware access

SYNOPSIS
res = W3D_LockHardware(context);
d0 a0

ULONG W3D_LockHardware(W3D_Context *);

FUNCTION
This function gains exclusive access to the hardware. It must be
called whenever objects are drawn, except when operating in ’indirect
render’ mode. You should not lock the frame too long, because the
system is freezed in locked state.

INPUTS
context - a pointer to a W3D_Context structure

RESULT
A value indication success or failure:

W3D_SUCCESS - The hardware is locked
W3D_NOTVISIBLE - The bitmap is not visible/swapped out of vmem

EXAMPLE
if (W3D_SUCCESS == W3D_LockHardware(context) {

...
Render some stuff
...
W3D_UnLockHardware(context);

} else {
printf("Can‘t lock hardware\n");

}

NOTES
This function may forbid multitasking (depending on the driver),
or even disable interrupts.

BUGS

SEE ALSO
W3D_UnLockHardware, W3D_SetState

1.34 Warp3D/W3D_Query

Warp3D 32 / 65

NAME
W3D_Query -- Query capabilities of the driver

SYNOPSIS
res = W3D_Query(context, query, destfmt)
d0 a0 d0 d1

ULONG W3D_Query(W3D_Context *, ULONG, ULONG);

FUNCTION
This function is used to query the hardware/driver
capabilities. It takes destination formats into account
(checking compatibility).

INPUTS
context - pointer to a W3D_Context
query - a value to be queried.

Currently, the following values are supported:
W3D_Q_DRAW_POINT point drawing
W3D_Q_DRAW_LINE line drawing
W3D_Q_DRAW_TRIANGLE triangle drawing
W3D_Q_DRAW_POINT_X points with size != 1 supported
W3D_Q_DRAW_LINE_X lines with width != 1 supported
W3D_Q_DRAW_LINE_ST line stippling supported
W3D_Q_DRAW_POLY_ST polygon stippling supported
W3D_Q_TEXMAPPING texmapping in general
W3D_Q_MIPMAPPING mipmapping
W3D_Q_BILINEARFILTER bilinear filter
W3D_Q_MMFILTER mipmap filter
W3D_Q_LINEAR_REPEAT W3D_REPEAT for linear texmapping
W3D_Q_LINEAR_CLAMP W3D_CLAMP for linear texmapping
W3D_Q_PERPESCTIVE perspective correction
W3D_Q_PERSP_REPEAT W3D_REPEAT for persp. texmapping
W3D_Q_PERSP_CLAMP W3D_CLAMP for persp. texmapping
W3D_Q_ENV_REPLACE texenv REPLACE
W3D_Q_ENV_DECAL texenv DECAL
W3D_Q_ENV_MODULATE texenv MODULATE
W3D_Q_ENV_BLEND texenv BLEND
W3D_Q_FLATSHADING flat shading
W3D_Q_GOURAUDSHADING gouraud shading
W3D_Q_ZBUFFER Z buffer in general
W3D_Q_ZBUFFERUPDATE Z buffer update
W3D_Q_ZCOMPAREMODES Z buffer compare modes
W3D_Q_ALPHATEST alpha test in general
W3D_Q_ALPHATESTMODES alpha test modes
W3D_Q_BLENDING alpha blending
W3D_Q_SRCFACTORS source factors
W3D_Q_DESTFACTORS destination factors
W3D_Q_FOGGING fogging in general
W3D_Q_LINEAR linear fogging
W3D_Q_EXPONENTIAL exponential fogging
W3D_Q_S_EXPONENTIAL square exponential fogging
W3D_Q_ANTIALIASING antialiasing in general
W3D_Q_ANTI_POINT point antialiasing
W3D_Q_ANTI_LINE line antialiasing
W3D_Q_ANTI_POLYGON polygon antialiasing

Warp3D 33 / 65

W3D_Q_ANTI_FULLSCREEN fullscreen antialiasing
W3D_Q_DITHERING dithering
W3D_Q_SCISSOR scissor test
W3D_Q_MAXTEXWIDTH max. texture width
W3D_Q_MAXTEXHEIGHT max. texture height
W3D_Q_RECTTEXTURES rectangular textures
W3D_Q_LOGICOP logical operations
W3D_Q_MASKING color/index masking
W3D_Q_STENCILBUFFER stencil buffer in general
W3D_Q_STENCIL_MASK mask value
W3D_Q_STENCIL_FUNC stencil functions
W3D_Q_STENCIL_SFAIL stencil operation SFAIL
W3D_Q_STENCIL_DPFAIL stencil operation DPFAIL
W3D_Q_STENCIL_DPPASS stencil operation DPPASS
W3D_Q_STENCIL_WRMASK stencil buffer supports write ←↩

maskin
g

W3D_Q_PALETTECONV driver can use texture with a ←↩
pallet

te
other than the screen palette ←↩

on
8 bit screens

W3D_Q_DRAW_POINT_FX driver supports point fx (fog, ←↩
zbuffe

r)
W3D_Q_DRAW_POINT_TEX driver supports points textured
W3D_Q_DRAW_LINE_FX driver supports line fx
W3D_Q_DRAW_LINE_TEX driver supports textured lines
W3D_Q_SPECULAR driver supports specular reflection

destfmt - The destination format

RESULT
Depends on the item. With most of the "is this supported"-type
queries, one of the following constants is returned:

W3D_FULLY_SUPPORTED Completely supported by driver
W3D_PARTIALLY_SUPPORTED Only partially supported
W3D_NOT_SUPPORTED Not supported

With "what is the value"-type queries like W3D_Q_MAXTEXWIDTH,
an ULONG is returned.

EXAMPLE
switch(W3D_Query(context, W3D_Q_TEXMAPING, destfmt)) {
case W3D_FULLY_SUPPORTED: printf("Completely supported by driver\n");

break;
case W3D_PARTIALLY_SUPPORTED: printf("Only partially supported\n");

break;
case W3D_NOT_SUPPORTED: printf("Not supported\n");

break;
}

NOTES
Regarding chunky/ARGB combinations:
You are advised that you always use chunky textures with chunky
screens only, and ARGB textures with ARGB screens

Warp3D 34 / 65

IMPORTANT: Prior to Version 2 of the API, the W3D_Query function
could be called with a NULL pointer instead of a context. Although
this possibility is still supported for backward compatibility,
the programmer is strictly encouraged to use the new W3D_QueryDriver
function instead. The W3D_QueryDriver function may be used to directly
query a specific driver for capabilities, which is essential when
working with V2+ and multiple drivers.

BUGS

SEE ALSO

W3D_QueryDriver()

1.35 Warp3D/W3D_QueryDriver

NAME
W3D_QueryDriver -- Query capabilities of any driver (V2)

SYNOPSIS
res = W3D_QueryDriver(driver, query, destfmt)
d0 a0 d0 d1

ULONG W3D_QueryDriver(W3D_Driver *, ULONG, ULONG);

FUNCTION
This function is similar to the W3D_Query function, only
that it does not require a context but rather operates on
a driver obtained by

W3D_GetDrivers()
.

INPUTS
driver - A pointer to a W3D_Driver structure obtained by

W3D_GetDrivers()
query - The data item to be queried. See

W3D_Query()
for

a list of available query items.
destfmt - The destination format you intend to use.

RESULT
One of the following values is returned:

W3D_FULLY_SUPPORTED Completely supported by driver
W3D_PARTIALLY_SUPPORTED Only partially supported
W3D_NOT_SUPPORTED Not supported

EXAMPLE

NOTES

BUGS

Warp3D 35 / 65

SEE ALSO

W3D_Query()
,
W3D_GetDrivers()

1.36 Warp3D/W3D_ReadStencilPixel

NAME
W3D_ReadStencilPixel -- Read a pixel from the stencil buffer

SYNOPSIS
success = W3D_ReadStencilPixel(context, x, y, st);
d0 a0 d0 d1 a1

ULONG W3D_ReadStencilPixel(W3D_Context *, ULONG, ULONG, ULONG *);

FUNCTION
Read the stencil buffer pixel at x,y into the variable pointed
to by st.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - The context to use
x,y - Coordinates of point
st - Pointer to a variable to hold the read pixel

RESULT
One of the following values:

W3D_SUCCESS Operation successful
W3D_NOSTENCILBUFFER No stencil buffer present
W3D_NOTVISIBLE The stencil buffer can not be accessed by

the hardware
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES
This function is primarly intended for OpenGL implementations,
which might need access to the stencil buffer. This function
is slow and should normally not be called.

Important note: In indirect mode you have to make sure, that
the stencil buffer is up to date, no Flush is internally done
by this function. You have to call W3D_Flush, if the stencil
buffer is not up to date yet.

BUGS
Indirect mode: the hardware is internally not locked for
performance reasons, therefore the result might be wrong, if
the corresponding buffer is swapped out.

SEE ALSO

Warp3D 36 / 65

W3D_ReadStencilSpan

1.37 Warp3D/W3D_ReadStencilSpan

NAME
W3D_ReadStencilSpan -- Read a range of stencil buffer pixels

SYNOPSIS
success = W3D_ReadStencilSpan(context, x, y, n, st);
d0 a0 d0 d1 d2 a1

ULONG W3D_ReadStencilSpan(W3D_Context *, ULONG, ULONG, ULONG,
ULONG []);

FUNCTION
Read a span of pixel value from the stencil buffer. The resulting
pixels are put into the memory area pointed to by st.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - The context
x,y - Coordinates of span start
n - Number of pixels to read
st - pointer to the array to hold the pixel

RESULT
One of the following values:

W3D_SUCCESS Operation successful
W3D_NOSTENCILBUFFER No stencil buffer found
W3D_NOTVISIBLE The stencil buffer can not be accessed by

the hardware
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES
If you need to read more than one consecutive pixel, use this
function instead of calling the single pixel version repeatedly.

This function is primarly intended for OpenGL implementations,
which might need access to the stencil buffer. This function
is slow and should normally not be called.

Important note: In indirect mode you have to make sure, that
the stencil buffer is up to date, no Flush is internally done
by this function. You have to call W3D_Flush, if the stencil
buffer is not up to date yet.

BUGS
Indirect mode: the hardware is internally not locked for
performance reasons, therefore the result might be wrong, if
the corresponding buffer is swapped out.

SEE ALSO

Warp3D 37 / 65

W3D_ReadStencilPixel

1.38 Warp3D/W3D_ReadZPixel

NAME
W3D_ReadZPixel -- Read a pixel value from the ZBuffer

SYNOPSIS
success = W3D_ReadZPixel(context, x, y, z);
d0 a0 d0 d1 a1

ULONG W3D_ReadZPixel(W3D_Context *, ULONG, ULONG, W3D_Double *);

FUNCTION
Read ZBuffer pixel x,y into variable pointed to by z;
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - pointer to the context
x,y - coordinates of pixel
z - pointer to a W3D_Double

RESULT
One of the following:

W3D_SUCCESS Successful operation
W3D_NOZBUFFER No ZBuffer was allocated
W3D_NOTVISIBLE ZBuffer is not visible

EXAMPLE

NOTES
This function is primarly intended for OpenGL implementations,
which might need access to the Z buffer. This function
is slow and should normally not be called.

* IMPORTANT NOTE: *
For speed reasons, this call is *NOT* compatible with indirect drawing.
To use this call with indirect mode, you have to manually W3D_Flush,
and, should you use any drawing calls, you’ll have to W3D_Flush again.

BUGS
Indirect mode: the hardware is internally not locked for
performance reasons, therefore the result might be wrong, if
the corresponding buffer is swapped out.

SEE ALSO
W3D_ReadZSpan

1.39 Warp3D/W3D_ReadZSpan

Warp3D 38 / 65

NAME
W3D_ReadZSpan -- read a range of ZBuffer pixels

SYNOPSIS
success = W3D_ReadZSpan(context, x, y, n, z);
d0 a0 d0 d1 d2 a1

ULONG W3D_ReadZSpan(W3D_Context *, ULONG, ULONG, ULONG, W3D_Double []);

FUNCTION
Read a span of ZBuffer pixels into an array pointed to by the z
parameter.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - Pointer to the context
x,y - Coordinates of pixels
n - Number of pixels to read
z - Array of W3D_Double to fill. Note that the array must

be large enough (i.e. at least n)

RESULT
One of the following values

W3D_SUCCESS Operation successful
W3D_NOZBUFFER No ZBuffer was allocated
W3D_NOTVISIBLE ZBuffer is not visible

EXAMPLE

NOTES
You should use this function instead of W3D_ReadZPixel if you‘re
going to read more pixels than just one.

This function is primarly intended for OpenGL implementations,
which might need access to the Z buffer. This function
is slow and should normally not be called.

* IMPORTANT NOTE: *
For speed reasons, this call is *NOT* compatible with indirect drawing.
To use this call with indirect mode, you have to manually W3D_Flush,
and, should you use any drawing calls, you’ll have to W3D_Flush again.

BUGS
Indirect mode: the hardware is internally not locked for
performance reasons, therefore the result might be wrong, if
the corresponding buffer is swapped out.

SEE ALSO
W3D_ReadZPixel

1.40 Warp3D/W3D_ReleaseTexture

Warp3D 39 / 65

NAME
W3D_ReleaseTexture -- Release texture from video ram

SYNOPSIS
W3D_ReleaseTexture(context, texture);

a0 a1

void W3D_ReleaseTexture(W3D_Context *, W3D_Texture *);

FUNCTION
Release a texture from video ram. This frees the memory
allocated by that texture.

INPUTS
context - Pointer to a W3D_Context
texture - Pointer to the texture to be released

RESULT
None

EXAMPLE
extern W3D_Texture *texture;
extern W3D_Context *context;
W3D_ReleaseTexture(context, texture);

NOTES
This call does nothing if W3D_AUTOTEXMANAGEMENT is set
in the context‘s state.

BUGS

SEE ALSO
W3D_UploadTexture

1.41 Warp3D/W3D_RequestMode

NAME
W3D_RequestMode -- Request a screen mode (V2)

SYNOPSIS
ModeID = W3D_RequestMode(taglist);

D0 a0

ULONG W3D_RequestMode(struct TagItem *);

FUNCTION
This function presents the user with an ASL-Type screen mode
requester. The mode requester will only include those screen modes
that are supported by the specified combination of tag items.

INPUTS
taglist - A taglist of W3D_SMR_#? items. The following items

are defined:
W3D_SMR_SIZEFILTER (BOOL)

Warp3D 40 / 65

If set to TRUE, filter ASLSM_MinWidth, ASLSM_MinHeight,
ASLSM_MaxWidth, ASL_MaxHeight

W3D_SMR_DRIVER (W3D_Driver *)
A pointer to a W3D_Driver structure that you want to use.
If this tag is specified, the screen modes in the
requester will all be compatible with this driver.

W3D_SMR_DESTFMT (W3D_FMT_#? constants)
The screen/bitmap formats you want to use. If this tag
is active, all screenmodes will be filtered accordingly.
You may specify a bitmask to get more than one format.

W3D_SMR_TYPE (W3D_DRIVER_3DHW/W3D_DRIVER_CPU)
Specifies if you want to filter the screen modes according
to the driver type. If this is set to W3D_DRIVER_CPU,
only the active CPU driver is used for filtering. Otherwise,
all modes of all hardware is filtered, unless the W3D_SMR_DRIVER
tag specifies a special driver.

ASLSM_???
You may give an arbitrary number of ASLSM_#? tags that will be
passed to asl.library. Most notably, these include those tags
the localize the requester or modify the look, including position
and size. Most notably, the ASLSM_Min#? and ASLSM_Max#? tags
may be used in a special meaning if the W3D_SMR_SIZEFILTER
tag item is present and set to TRUE.

Not all of the combinations make sense, for example, specifiying
W3D_SMR_TYPE together with W3D_SMR_DRIVER.

RESULT
ModeID - The ModeID the user selected, or INVALID_ID if the requester

was cancelled.

EXAMPLE

NOTES

BUGS

SEE ALSO
W3D_SelectDriver()

1.42 Warp3D/W3D_SetAlphaMode

NAME
W3D_SetAlpha -- Set the alpha test mode

SYNOPSIS
success = W3D_SetAlphaMode(context, mode, refval);
d0 a0 d1 a1

ULONG W3D_SetAlphaMode(W3D_Context, ULONG, W3D_Float *);

FUNCTION
This function defines the way the alpha test is performed.
This test compares the incoming pixel’s alpha value
with the reference value, and decides, depending on the set

Warp3D 41 / 65

mode, if the pixel is discarded or not.

INPUTS
context - The context
mode - The alpha test mode. One of the following:

W3D_A_NEVER Always discard
W3D_A_LESS Draw, if value < refvalue
W3D_A_GEQUAL Draw, if value >= refvalue
W3D_A_LEQUAL Draw, if value <= refvalue
W3D_A_GREATER Draw, if value > refvalue
W3D_A_NOTEQUAL Draw, if value != refvalue
W3D_A_ALWAYS always draw

refvalue - Pointer to the alpha reference value. Must be in
the interval [0..1]

RESULT
One of the following:

W3D_SUCCESS Success
W3D_ILLEGALINPUT Illegal alpha mode
W3D_UNSUPPORTEDATEST Alpha test unsupported
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES
Alpha testing is probably not supported on older 3D hardware.

BUGS

SEE ALSO

1.43 Warp3D/W3D_SetBlendMode

NAME
W3D_SetBlendMode -- Set the blending mode

SYNOPSIS
success = W3D_SetBlendMode(context, srcfunc, dstfunc);
d0 a0 d0 d1

ULONG W3D_SetBlendMode(W3D_Context *, ULONG, ULONG);

FUNCTION
Sets the blending mode. Blending has to be enabled using
W3D_SetState. For more information about the blending modes, see
the OpenGL specs.

INPUTS
context - pointer to the W3D_Context
srcfunc - The mode for the source pixel. Values are:

W3D_ZERO
W3D_ONE
W3D_DST_COLOR
W3D_ONE_MINUS_DST_COLOR
W3D_SRC_ALPHA

Warp3D 42 / 65

W3D_ONE_MINUS_SRC_ALPHA
W3D_DST_ALPHA
W3D_ONE_MINUS_DST_ALPHA
W3D_SRC_ALPHA_SATURATE
W3D_CONSTANT_COLOR
W3D_ONE_MINUS_CONSTANT_COLOR
W3D_CONSTANT_ALPHA
W3D_ONE_MINUS_CONSTANT_ALPHA

dstfunc - Mode for the destination:
W3D_ZERO
W3D_ONE
W3D_SRC_COLOR
W3D_ONE_MINUS_SRC_COLOR
W3D_SRC_ALPHA
W3D_ONE_MINUS_SRC_ALPHA
W3D_DST_ALPHA
W3D_ONE_MINUS_DST_ALPHA
W3D_CONSTANT_COLOR
W3D_ONE_MINUS_CONSTANT_COLOR
W3D_CONSTANT_ALPHA
W3D_ONE_MINUS_CONSTANT_ALPHA

RESULT
One of the following:

W3D_SUCCESS Success
W3D_ILLEGALINPUT Illegal alpha blend mode
W3D_UNSUPPORTEDBLEND Mode is not supported by current driver
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES

BUGS

SEE ALSO
W3D_SetState, W3D_GetState

1.44 Warp3D/W3D_SetColorMask

NAME
W3D_SetColorMask -- Set mask for drawing

SYNOPSIS
success = W3D_SetColorMask(context, red, green, blue, alpha);
d0 a0 d0 d1 d2 d3

ULONG W3D_SetColorMask(W3D_Context *, W3D_Bool, W3D_Bool, W3D_Bool,
W3D_Bool);

FUNCTION
This function defines the mask for all drawing operations in
direct color mode (15/16/24/32 bit modes).

INPUTS

Warp3D 43 / 65

context - the context
red
green
blue
alpha - If set to FALSE, the component should be masked out.

RESULT
W3D_SUCCESS Success
W3D_MASKNOTSUPPORTED Masking is not supported by the current driver
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES

BUGS

SEE ALSO
W3D_SetPenMask

1.45 Warp3D/W3D_SetCurrentColor

NAME
W3D_SetCurrentColor -- Set color for single-color operations

SYNOPSIS
ret = W3D_SetCurrentColor(context, color);

a0 a1

ULONG W3D_SetCurrentColor(W3D_Context *, W3D_Color *);

FUNCTION
Defines the color to use for operations where one single color
is used, i.e. flat-shaded opbjects. This color is only used for
RGBA destinations.

INPUTS
context - Context pointer
color - Pointer to a color to use

RESULT
W3D_QUEUFAIL Queueing failed in indirect mode
W3D_NOTVISIBLE Locking failed in indirect mode

EXAMPLE

NOTES

BUGS

SEE ALSO

Warp3D 44 / 65

1.46 Warp3D/W3D_SetCurrentPen

NAME
W3D_SetCurrentPen -- Set pen for single-color operations

SYNOPSIS
W3D_SetCurrentPen(context, pen);

a0 d1

void W3D_SetCurrentPen(W3D_Context *, ULONG);

FUNCTION
Define the pen to use for single-color operations, such as flat-shaded
objects. The pen setting is olny used for chunky destinations.

INPUTS
context - a context pointer
pen - the pen number to use

RESULT
W3D_QUEUFAIL Queueing failed in indirect mode
W3D_NOTVISIBLE Locking failed in indirect mode

EXAMPLE

NOTES

BUGS

SEE ALSO

1.47 Warp3D/W3D_SetDrawRegion

NAME
W3D_SetDrawRegion -- Set the clipping rectangle

SYNOPSIS
success = W3D_SetDrawRegion(context, bm, yoffset, scissor);
d0 a0 a1 d1 a2

ULONG W3D_SetDrawRegion(W3D_Context *, struct BitMap *, ULONG,
W3D_Scissor *);

FUNCTION
This function defines/changes the current drawing region.
It’s used for multibuffering and clipping.

INPUTS
context - The context
bm - The bitmap to draw to. If NULL, the old bitmap is used
yoffset - The vertical offset for the top-left edge. Used for

multibuffering.
scissor - If not NULL, defines the scissoring region. All values

are taken to be relative to (0, yoffset) in the bitmap.

Warp3D 45 / 65

RESULT
One of the following:

W3D_SUCCESS Success.
W3D_ILLEGALBITMAP Illegal bitmap
W3D_UNSUPPORTEDFMT Unsupported format
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES
Due to constraints on bitmap placement in some drivers, bitmap data
must be aligned to 8 byte boundaries

BUGS

SEE ALSO

1.48 Warp3D/W3D_SetDrawRegionWBM

NAME
W3D_SetDrawRegionWBM -- Set the clipping rectangle for a W3D_Bitmap

SYNOPSIS
success = W3D_SetDrawRegion(context, bm, scissor);
d0 a0 a1 a2

ULONG W3D_SetDrawRegion(W3D_Context *, W3D_Bitmap *, W3D_Scissor *);

FUNCTION
This function defines/changes the current drawing region.
It’s used for multibuffering and clipping.
The only difference to W3D_SetDrawRegion is the bitmap used.

INPUTS
context - The context
bm - The bitmap to draw to. If NULL, the old bitmap is used
scissor - If not NULL, defines the scissoring region. All values

are taken to be relative to (0, yoffset) in the bitmap.

RESULT
One of the following:

W3D_SUCCESS Success.
W3D_ILLEGALBITMAP Illegal bitmap
W3D_UNSUPPORTEDFMT Unsupported format

EXAMPLE

NOTES

BUGS

SEE ALSO

Warp3D 46 / 65

W3D_SetDrawRegion

1.49 Warp3D/W3D_SetFilter

NAME
W3D_SetFilter -- Set the filter method

SYNOPSIS
res = W3D_SetFilter(context, texture, MinFilter, MagFilter);
d0 a0 a1 d0 d1

ULONG W3D_SetFilter(W3D_Context *, W3D_Texture *, ULONG,
ULONG);

FUNCTION
Set the texture‘s filter mode. The filter mode used is
texture dependant, so it is possible to set different
filter modes for different texture.

INPUTS
context - Pointer to a W3D_Context
texture - Pointer to the texture to be modified
MinFilter - Minification filter. May be one of the following:

W3D_NEAREST no mipmapping, no filtering
W3D_LINEAR no mipmapping, bilinear filtering
W3D_NEAREST_MIP_NEAREST mippmapping, no filtering
W3D_LINEAR_MIP_NEAREST mipmapping, bilinear filtering
W3D_NEAREST_MIP_LINEAR mipmapping filtered, no filtering ←↩

on
texture

W3D_LINEAR_MIP_LINEAR mippmapping with trilinear ←↩
filtering

MagFilter - Magnification filter. One of these:
W3D_NEAREST no filtering
W3D_LINEAR Bilinear filtering

RESULT
A value indicating success of failure. May be one of the following:

W3D_SUCCESS Success
W3D_ILLEGALINPUT Illegal values for Min/MagFilter
W3D_UNSUPPORTEDFILTER Desired filter not supported by driver
W3D_WARNING Success, but the filter mode was adjusted,

because *_MIP_* was given for a texture
without mipmaps

W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES
Some hardware may ignore the MagFilter. In this case, the MinFilter
is used even if the texture is enlarged.

BUGS

SEE ALSO

Warp3D 47 / 65

W3D_Query, W3D_GetTexFmtInfo

1.50 Warp3D/W3D_SetFogParams

NAME
W3D_SetFogParams -- Set fog parameters

SYNOPSIS
success = W3D_SetFogParams(context, fogparams, fogmode);
d0 a0 a1 d1

ULONG W3D_SetFogParams(W3D_Context *, W3D_Fog *, ULONG);

FUNCTION
This function defines fogging parameters and modes.

INPUTS
context - The context to be modified
fogparams - Pointer to a W3D_Fog.
fogmode - The type of fog.

W3D_FOG_LINEAR Linear fog
W3D_FOG_EXP Exponential fog
W3D_FOG_EXP_2 Square exponential fogging

RESULT
One of the following:

W3D_SUCCESS Success
W3D_ILLEGALINPUT Illegal input
W3D_UNSUPPORTEDFOG Fog mode is not supported by current driver
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.51 Warp3D/W3D_SetLogicOp

NAME
W3D_SetLogicOp -- Define logical operation

SYNOPSIS
success = W3D_SetLogicOp(context, operation);
d0 a0 d1

ULONG W3D_SetLogicOp(W3D_Context *, ULONG);

FUNCTION
Set the logical operation. For further information, see the OpenGL

Warp3D 48 / 65

specs.

INPUTS
context - Same as ever
operation - The logical operation desired. Possible values are:

W3D_LO_CLEAR dest = 0
W3D_LO_AND dest = source & dest
W3D_LO_AND_REVERSE dest = source & !dest
W3D_LO_COPY dest = source
W3D_LO_AND_INVERTED dest = !source & dest
W3D_LO_NOOP dest = dest
W3D_LO_XOR dest = source ^ dest
W3D_LO_OR dest = source | dest
W3D_LO_NOR dest = !(source | dest)
W3D_LO_EQUIV dest = !(source ^ dest)
W3D_LO_INVERT dest = !dest
W3D_LO_OR_REVERSE dest = source | !dest
W3D_LO_COPY_INVERTED dest = !source
W3D_LO_OR_INVERTED dest = !source | dest
W3D_LO_NAND dest = !(source & dest)
W3D_LO_SET dest = 1

RESULT
W3D_SUCCESS Success
W3D_ILLEGALINPUT Wrong operation
W3D_UNSUPPORTEDLOGICOP Unsupported by current driver
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.52 Warp3D/W3D_SetPenMask

NAME
W3D_SetPenMask -- set a pen mask for drawing operations

SYNOPSIS
ret = W3D_SetPenMask(context, indexmask)
d0 a0 d1

ULONG W3D_SetPenMask(W3D_Context *, ULONG);

FUNCTION
This function defines the mask for all drawing operations in
chunky modes (8 bit modes).

INPUTS
context - The context to use
indexmask - A bitmask which is applied to chunky pixels

Warp3D 49 / 65

RESULT
W3D_SUCCESS Success
W3D_MASKNOTSUPPORTED Masking is not supported by the current driver
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES

BUGS

SEE ALSO
W3D_SetColorMask

1.53 Warp3D/W3D_SetScissor

NAME
W3D_SetScissor -- (Re-) Set the clipping rectangle

SYNOPSIS
W3D_SetScissor(context,scissor);

a0 a1

void W3D_SetScissor(W3D_Context* context, W3D_Scissor* scissor);

FUNCTION
This function sets or resets the clipping rectangle while retaining
the current drawing region.

INPUTS
context - The context structure
scissor - A new scissor or NULL for full-screen/no clipping

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO

W3D_SetDrawRegion()

1.54 Warp3D/W3D_SetState

NAME
W3D_SetState -- Enable or disable hardware and context states

SYNOPSIS

Warp3D 50 / 65

success = W3D_SetState(context, state, newstate);
d0 a0 d0 d1

ULONG W3D_SetState(W3D_Context *, ULONG, ULONG);

FUNCTION
This function is used to enable or disable hardware
effects or context states. Success or failure depends
on the hardware‘s ability to use the effect. Some
hardware may not even be able to switch off some effects.

INPUTS
context - pointer to a W3D_Context
state - state to be changed. Current states are listed here.

For a more detailed description, read the doc files.
W3D_AUTOTEXMANAGEMENT automatic texture management
W3D_SYNCHRON wait, until HW is idle
W3D_INDIRECT buffer drawings until W3D_Flush()’ed
W3D_GLOBALTEXENV global texture modes
W3D_DOUBLEHEIGHT screen has double height
W3D_FAST Drawing functions may modify passed ←↩

st
ructures

W3D_TEXMAPPING texmapping state
W3D_PERSPECTIVE perspective correction state
W3D_GOURAUD gouraud/flat shading
W3D_ZBUFFER Z-Buffer state
W3D_ZBUFFERUPDATE Z-Buffer update state
W3D_BLENDING Alpha blending state
W3D_FOGGING Fogging state
W3D_ANTI_POINT Point antialiasing
W3D_ANTI_LINE Line antialiasing
W3D_ANTI_POLYGON Polygon antialiasing
W3D_ANTI_FULLSCREEN Fullscreen antialiasing
W3D_DITHERING dithering state
W3D_LOGICOP logical operations state
W3D_STENCILBUFFER stencil buffer state
W3D_ALPHATEST alpha test operation
W3D_SPECULAR Specular highlightung state
W3D_TEXMAPPING3D 3D texturemapping state
W3D_SCISSOR Scissor test

newstate - indicates what should be done to the state bit:
W3D_ENABLE try to switch this feature on
W3D_DISABLE try to switch it off

RESULT
One of two constants:

W3D_SUCCESS the operation was successful
W3D_UNSUPPORTEDSTATE the operation can not be done

EXAMPLE
if (W3D_UNSUPPORTEDSTATE == W3D_SetState(context, W3D_ANTI_FULLSCREEN,

W3D_ENABLE)) {
printf("This hardware does not support fullscreen antialiasing\n");

} else {
printf("Fullscreen antialiasing enabled\n");

}

Warp3D 51 / 65

NOTES
It’s not required to check the return value, however, do not assume ←↩

anything.
The current hardware may not have any restrictions on using
i.e. Z buffering, but future hardware may.

BUGS

SEE ALSO
W3D_GetState, W3D_Query

1.55 Warp3D/W3D_SetStencilFunc

NAME
W3D_SetStencilFunc -- Set stencil function

SYNOPSIS
success = W3D_SetStencilFunc(context, func, refvalue, mask);
d0 a0 d0 d1 d2

ULONG W3D_SetStencilMode(W3D_Context *, ULONG, ULONG, ULONG);

FUNCTION
Set the stencil test function, as used by the OpenGL render pipeline.
For more information, refer to the OpenGL specs.

INPUTS
context - W3D context structure
func - stencil test function. Possible value are:

W3D_ST_NEVER don’t draw pixel
W3D_ST_ALWAYS draw always
W3D_ST_LESS draw, if refvalue < ST
W3D_ST_LEQUAL draw, if refvalue <= ST
W3D_ST_EQUAL draw, if refvalue == ST
W3D_ST_GEQUAL draw, if refvalue >= ST
W3D_ST_GREATER draw, if refvalue > ST
W3D_ST_NOTEQUAL draw, if refvalue != ST

refvalue - reference value (0-255) used for the stencil test
mask - mask value applied to ’refvalue’ and to the stencil ←↩

buffer
content

RESULT
W3D_SUCCESS Success
W3D_ILLEGALINPUT Illegal input
W3D_UNSUPPORTEDSTTEST Not supported by current driver
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES
Stencil buffering is only supported by newer hardware
Note that the stencil test has to be enabled using
W3D_SetState.

Warp3D 52 / 65

BUGS

SEE ALSO

1.56 Warp3D/W3D_SetStencilOp

NAME
W3D_SetStencilOp -- Set stencil operation

SYNOPSIS
success = W3D_SetStencilOp(context, sfail, dpfail, dppass);
d0 a0 d0 d1 d2

ULONG W3D_SetStencilOp(W3D_Context *, ULONG, ULONG, ULONG);

FUNCTION
Set the stencil test operation, as used by the OpenGL render
pipeline. For more information, refer to the OpenGL specs.

INPUTS
context - context pointer
dpfail - action, if depth test fails
dppass - action, if depth test succeeds. Possible values are

(for all three mentioned cases):
W3D_ST_KEEP keep stencil buffer value
W3D_ST_ZERO clear stencil buffer value
W3D_ST_REPLACE replace by reference value
W3D_ST_INCR increment
W3D_ST_DECR decrement
W3D_ST_INVERT invert bitwise

RESULT
W3D_SUCCESS Success
W3D_ILLEGALINPUT Illegal input
W3D_UNSUPPORTEDSTTEST Not supported by current driver
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES
Stencil buffering is only supported on newer hardware.
Note that the stencil test has to be enabled using
W3D_SetState.

BUGS

SEE ALSO

1.57 Warp3D/W3D_SetTexEnv

Warp3D 53 / 65

NAME
W3D_SetTexEnv -- Set texture environment parameters

SYNOPSIS
success = W3D_SetTexEnv(context, texture, envparam, envcolor);
d0 a0 a1 d1 a2

ULONG W3D_SetTexEnv(W3D_Context *, W3D_Texture *, ULONG,
W3D_Color *);

FUNCTION
This function is used to set the texture environment parameters.
These parameters define how a texture is applied to a drawn
primitive. This also involves lit-texturing, and unlit-texturing.

INPUTS
context - a pointer to a W3D_Context (surprise !:)
texture - a pointer to the texture object to be modified
envparam - the environment parameter. One of the following:

W3D_REPLACE Unlit texturing
W3D_DECAL Lit texturing using the alpha component

as blending value
W3D_MODULATE Lit texturing by modulation of source

and destination. Modulation means
source and destination are multiplied.

W3D_BLEND Blending with the color in envcolor.
envcolor - Only specified when envparam == W3D_BLEND. The

given color value is used for blending with the texture.
Must be NULL for all other envparams.

RESULT
A value indicating success or failure. Current values are:

W3D_SUCCESS (guess :)
W3D_ILLEGALINPUT Unknown envparam given
W3D_UNSUPPORTEDTEXENV Not supported by the current driver
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES
The texture environment is texture-specific by default. By enabling
the W3D_GLOBALTEXENV state using

W3D_SetState()
the texture environment

can be made global for all textures (this is the case in OpenGL,
for example).

BUGS

SEE ALSO
W3D_GetTexFmtInfo

Warp3D 54 / 65

1.58 Warp3D/W3D_SetWrapMode

NAME
W3D_SetWrapMode -- Set the texture‘s wrapping mode

SYNOPSIS
success = W3D_SetWrapMode(context, texture, mode_s, mode_t, border);
d0 a0 a1 d0 d1 a2

ULONG W3D_SetWrapMode(W3D_Context *, W3D_Texture *, ULONG,
ULONG, W3D_Color *);

FUNCTION
Sets the texture‘s wrapping mode.

INPUTS
context - A W3D_Context pointer
texture - The texture to be modified
mode_s - The wrapping in s direction (vertical). Can be one

of the following constants:
W3D_REPEAT Texture is repeated
W3D_CLAMP Texture is clamped, the border is filled

with the color given in border.
mode_t - Wrapping in t direction (horizontal). Same as above.
border - A pointer to a W3D_Color used for the border (when clamping).

RESULT
A value indicating success or failure. One of the following:

W3D_SUCCESS - Success
W3D_ILLEGALINPUT - Illegal wrap mode
W3D_UNSUPPORTEDWRAPMODE - The desired wrap mode is not supported

by the current driver

EXAMPLE

NOTES
The Virge does not allow asymmetric wrapping, therefore you should
use the query facility, if asymmetric wrapping is possible.

You should usually use W3D_REPEAT, since W3D_CLAMP is currently
not possible with the Virge.

BUGS

SEE ALSO
W3D_Query, W3D_GetTexFmtInfo

1.59 Warp3D/W3D_SetWriteMask

NAME
W3D_SetWriteMask -- write protext bits in the stencil buffer

SYNOPSIS
success = W3D_SetWriteMask(context, mask);

Warp3D 55 / 65

d0 a0 d1

ULONG W3D_SetWriteMask(W3D_Context *, ULONG);

FUNCTION
Defines which bits of the stencil buffer are write protected

INPUTS
context - context pointer
mask - a bitmask, indicationg which bits of the

stencil buffer should be write-protected.
Setting a bit to 1 allows write access,
while a 0 bit protects it from writing

RESULT
W3D_SUCCESS success
W3D_UNSOPPORTEDTEST Not supported by current driver
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES
Stencil buffering is only supported on newer hardware.
Note that the stencil test has to be enabled using
W3D_SetState.

BUGS

SEE ALSO

1.60 Warp3D/W3D_SetZCompareMode

NAME
W3D_SetZCompareMode -- Set the ZBuffer compare mode

SYNOPSIS
success = W3D_SetZCompareMode(context, mode);
d0 a0 d1

ULONG W3D_SetZCompareMode(W3d_Context *, ULONG);

FUNCTION
Set the compare mode used by ZBuffering. This mode
determines what will be drawn depending on the z coordinate
of the primitive to be drawn, and the value currently
in the ZBuffer. For more information on ZBuffering, see the
OpenGL specs, or get a textbook about Computer Graphics.

INPUTS
context - A context pointer
mode - The ZBuffer compare mode. One of the following values:

W3D_Z_NEVER Never pass, discard pixel
W3D_Z_LESS Draw if z < zbuffer
W3D_Z_GEQUAL Draw if z >= zbuffer
W3D_Z_LEQUAL Draw if z <= zbuffer

Warp3D 56 / 65

W3D_Z_GREATER Draw if z > zbuffer
W3D_Z_NOTEQUAL Draw if z != zbuffer
W3D_Z_EQUAL Draw if Z == zbuffer
W3D_Z_ALWAYS Always draw

RESULT
One of the following values:

W3D_SUCCESS Operation successful
W3D_ILLEGLAINPUT Illegal compare mode
W3D_UNSUPPORTEDZCMP Comparemode unsupported by current driver
W3D_NOTVISIBLE Indirect mode only. Locking failed.

EXAMPLE

NOTES
W3D_Z_LESS is the "normal" behavior (i.e. depth cueing), while
W3D_Z_NOTEQUAL can be used as a poor man’s stencil buffering.

When mixing software and hardware rendering (for example in OpenGL
implementations, then you should be aware, that using some of
the Z compare modes (i.e. W3D_Z_EQUAL, W3D_Z_NOTEQUAL) might not
work correctly, since the results of the software engine might
not be exactly the same as the results of the hardware engine.

BUGS

SEE ALSO
W3D_ClearZBuffer

1.61 Warp3D/W3D_TestMode

NAME
W3D_TestMode -- Test Mode and return driver (V2)

SYNOPSIS
driver = W3D_TestMode(modeid);

D0 D0

W3D_Driver *W3D_TestMode(ULONG);

FUNCTION
Given a standard ModeID, this function tests if there is a
driver available for this DisplayID. A hardware driver is
preferred, although it will return a CPU driver (if found)
in case none of the installed hardware drivers support this
screenmode.

INPUTS
modeid - A standard AmigaOS DisplayID

RESULT
driver - A pointer to a suitable driver or NULL if

no matching or CPU driver found.

Warp3D 57 / 65

EXAMPLE

NOTES
This function will also check if the CPU driver actually supports
this format, so be prepared to check for a NULL return value.

BUGS

SEE ALSO
W3D_GetDrivers

1.62 Warp3D/W3D_UnLockHardware

NAME
W3D_UnLockHardware -- Release the exclusive hardware lock

SYNOPSIS
W3D_UnLockHardware(context);

a0

void W3D_UnLockHardware(W3D_Context *);

FUNCTION
This function releases a hardware lock previously acquired
with W3D_LockHardware.

INPUTS
context - a pointer to a W3D_Context

RESULT
None

EXAMPLE
if (W3D_SUCCESS == W3D_LockHardware(context) {

...
Render some stuff
...
W3D_UnLockHardware(context);

} else {
printf("Can‘t lock hardware\n");

}

NOTES

BUGS

SEE ALSO
W3D_LockHardware, W3D_GetState

1.63 Warp3D/W3D_UpdateTexImage

Warp3D 58 / 65

NAME
W3D_UpdateTexImage -- Change the image of a texture or mipmap

SYNOPSIS
success = W3D_UpdateTexImage(context, texture, teximage, level, palette);
d0 a0 a1 a2 d1 a3

ULONG W3D_UpdateTexImage(W3D_Context *, W3D_Texture *, void *,
ULONG, ULONG *);

FUNCTION
Change the image mipmap data to the given texture. The new source
image must have dimensions and format equal to the old one. Also,
mipmap mode must be the same (meaning that if the old texture had
mipmaps, so must the new).
The resident state is unaffected. If the texture is in video ram,
the copy there will be replaced by the new image as soon as the
texture is used again for rendering.

INPUTS
context - a pointer to the current context
texture - a pointer to the texture to be modified
teximage - a pointer to the new image data
level - the texture level to be changed. 0 is the source image,

while levels != 0 are the mipmaps.
palette - a pointer to a palette, if needed. May be NULL, even if

the texture is chunky, in which case the old palette
will remain valid. See the note to the W3D_ATO_PALETTE
tag in W3D_AllocTexObject for some constraints on using
chunky textures on 8bit screens

RESULT
One of the following:

W3D_SUCCESS Success
W3D_NOMEMORY No memory left
W3D_NOMIPMAPS Mipmaps are not supported by this texture object
W3D_NOTVISIBLE (Indirect context only) Flushing failed due to failed

hardware locking

EXAMPLE

NOTES
Update operations are expensive, when done very often, because of
the bus bandwidth limitation. Be especially careful when using
texture animations. On hardware with a lot of VRAM, it might be
better to treat all frames of such an animation as separate
textures, so that all (or most of them) might be in VRAM.

BUGS

SEE ALSO
W3D_AllocTexObj

Warp3D 59 / 65

1.64 Warp3D/W3D_UpdateTexSubImage

NAME
W3D_UpdateTexSubImage -- Change part of a texture

SYNOPSIS
success = W3D_UpdateTexSubImage(context, texture, teximage, level,
d0 a0 a1 a2 d1

palette, scissor, srcbpr);
a3 a4 d0

ULONG W3D_UpdateTexImage(W3D_Context *, W3D_Texture *, void *,
ULONG, ULONG *, W3D_Scissor*, ULONG);

FUNCTION
Update only part of a texture, as defined by the scissor region.
The image data is assumed to be as large as the scissor region.
If it’s larger, the srcbpr parameter can be used to define the number
of bytes per source row. If teximage is non-zero, the contents is copied
into the texture. It can also be set to NULL. In this case, you can alter
the texture image yourself in the following way: The pointer supplied with
W3D_AllocTexObj/W3D_UpdateTexImage points to your supplied image data. You
are allowed to change this data, BUT you MUST call W3D_UpdateTexSubImage
after changing BEFORE doing anything else. This call must not be used ←↩

inside
a W3D_LockHardware/W3D_UnLockHardware pair. The scissor is then
considered a "damage region", and the area defined by it will be updated.

This function also recreates mipmaps, also only restricted to the scissor
region.

INPUTS
context - a pointer to the current context
texture - a pointer to the texture to be modified
teximage - a pointer to the new image data. Note that this pointer

is only "temporary", it may be reused immediatly. This is
different from the W3D_UpdateTexImage call.

level - the texture level to be changed. 0 is the source image,
while levels != 0 are the mipmaps.

palette - a pointer to a palette, if needed. May be NULL, even if
the texture is chunky, in which case the old palette
will remain valid. See the note to the W3D_ATO_PALETTE
tag in W3D_AllocTexObject for some constraints on using
chunky textures on 8bit screens

scissor - The given image data will be transfered into this region.
srcbpr - Bytes per row in source image. May be set to zero to indicate

that image data ans scissor size match.

RESULT
One of the following:

W3D_SUCCESS Success
W3D_NOMEMORY No memory left
W3D_NOMIPMAPS Mipmaps are not supported by this texture object,

or no mipmaps have been created yet.
W3D_NOTVISIBLE (Indirect context only) Flushing failed due to failed

hardware locking

Warp3D 60 / 65

EXAMPLE

NOTES
Update operations are expensive, when done very often, because of
the bus bandwidth limitation. Be especially careful when using
texture animations. On hardware with a lot of VRAM, it might be
better to treat all frames of such an animation as separate
textures, so that all (or most of them) might be in VRAM.

BUGS

SEE ALSO
W3D_AllocTexObj, W3D_UpdateTexImage

1.65 Warp3D/W3D_UploadTexture

NAME
W3D_UploadTexture -- Transfer a texture to video ram

SYNOPSIS
success = W3D_UploadTexture(context, texture);
d0 a0 a1

ULONG W3D_UploadTexture(W3D_Context *, W3D_Texture *);

FUNCTION
‘Upload‘ a texture to video ram. Video memory is allocated and
the texture image is copied there. The source texture stays in
main memory.

INPUTS
context - a W3D_Context
texture - the W3D_Texture to be transfered

RESULT
A value indication success or failure. One of the following:

W3D_SUCCESS It worked.
W3D_NOGFXMEM No video ram remaining.

EXAMPLE

NOTES
This function does nothing when W3D_AUTOTEXMANAGEMENT is set
in the current context‘s state. Note also that transferring
textures to video ram means transfer over the hardware‘s bus
system. Although newer cards like the CVPPC will have a PCI
or similar bus, those bus system are still considered
‘bottlenecks‘, and are usually much slower than main memory
transfers. It is advised that you use automatic texture management,
as this uses a LRU caching scheme. This was also used in
ADescent, and gave about 99.7 % hit ratio.

BUGS

Warp3D 61 / 65

SEE ALSO
W3D_ReleaseTexture, W3D_FlushTexture.

1.66 Warp3D/W3D_WaitIdle

NAME
W3D_WaitIdle -- Wait for the hardware to become idle

SYNOPSIS
W3D_WaitIdle(context);

a0

void W3D_WaitIdle(W3D_Context *);

FUNCTION
This function waits for the hardware to finish it‘s current
operation. It blocks your program until then.

INPUTS
context - a pointer to W3D_Context

RESULT
None

EXAMPLE
W3D_DrawSomething(context);
W3D_WaitIdle(context);
printf("Hardware is free again\n");

NOTES
You should use this function instead of W3D_CheckIdle if you
just want to wait for the hardware. This function may use
signals and/or interrupts for waiting, letting the CPU take care
of other tasks while waiting

Usually you won’t need to call this function, since W3D takes care,
that any drawing operation is only done, if the hardware is
ready to get a new job.

BUGS

SEE ALSO
W3D_CheckIdle

1.67 Warp3D/W3D_WriteStencilPixel

NAME
W3D_WriteStencilPixel -- Write a pixel into the stencil buffer

SYNOPSIS
res = W3D_WriteStencilBuffer(context, x, y, st);
d0 a0 d0 d1 d2

Warp3D 62 / 65

ULONG W3D_WriteStencilBuffer(W3D_Context *, ULONG, ULONG, ULONG);

FUNCTION
This function writes the pixel st into the stencil buffer of context,
at position x,y.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - a context pointer
x,y - position to write to
st - the pixel value

RESULT
A constant indicating success or failure. One of the following:

W3D_SUCCESS Success
W3D_NOSTENCILBUFFER Stencil buffering not supported by

current driver
W3D_NOTVISIBLE The stencil buffer can not be accessed by

the hardware

EXAMPLE

NOTES
Stencil buffering is not supported on older hardware.

This function is primarly intended for OpenGL implementations,
which might need access to the stencil buffer. This function
is slow and should normally not be called.

Important note: In indirect mode you have to make sure, that
the stencil buffer is up to date, no Flush is internally done
by this function. You have to call W3D_Flush, if the stencil
buffer is not up to date yet.

BUGS
Indirect mode: the hardware is internally not locked for
performance reasons, therefore the result might be wrong, if
the corresponding buffer is swapped out.

SEE ALSO
W3D_AllocStencilBuffer

1.68 Warp3D/W3D_WriteStencilSpan

NAME
W3D_WriteStencilSpan -- Write a span of stencil pixels

SYNOPSIS
success = W3D_WriteStencilSpan(context, x, y, n, st, mask);
d0 a0 d0 d1 d2 a1 a2

ULONG W3D_WriteStencilSpan(W3D_Context *, ULONG, ULONG, ULONG,
ULONG [], UBYTE []);

Warp3D 63 / 65

FUNCTION
Write a span of n stencil pixels into the stencil buffer, starting
at x,y. Pixels are taken from st. The mask array is used to skip pixels:
If a byte is set to 0, the corresponding pixel is not written.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - a context pointer
x,y - starting coordinates
n - number of pixels
st - array of stencil pixels
mask - mask array. May be NULL

RESULT
A constant indicating success or failure. One of the following:

W3D_SUCCESS Success
W3D_NOSTENCILBUFFER Stencil buffering not supported by

current driver
W3D_NOTVISIBLE The stencil buffer can not be accessed by

the hardware

EXAMPLE

NOTES
Stencil buffering is not supported on older hardware.

This function is primarly intended for OpenGL implementations,
which might need access to the stencil buffer. This function
is slow and should normally not be called.

Important note: In indirect mode you have to make sure, that
the stencil buffer is up to date, no Flush is internally done
by this function. You have to call W3D_Flush, if the stencil
buffer is not up to date yet.

BUGS
Indirect mode: the hardware is internally not locked for
performance reasons, therefore the result might be wrong, if
the corresponding buffer is swapped out.

SEE ALSO

1.69 Warp3D/W3D_WriteZPixel

NAME
W3D_WriteZPixel -- Write a pixel into the ZBuffer

SYNOPSIS
success = W3D_WriteZPixel(context, x, y, z);
d0 a0 d0 d1 a1

ULONG W3D_WriteZBuffer(W3D_Context *, ULONG, ULONG, W3D_Double *);

Warp3D 64 / 65

FUNCTION
Write ZBuffer pixel z into context’s ZBuffer, at x,y.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - The context
x,y - Coordinates of the pixel
z - Pointer to a W3D_Double that’s put into the zbuffer

RESULT

EXAMPLE

NOTES
This function is primarly intended for OpenGL implementations,
which might need access to the Z buffer. This function
is slow and should normally not be called.

* IMPORTANT NOTE: *
For speed reasons, this call is *NOT* compatible with indirect drawing.
To use this call with indirect mode, you have to manually W3D_Flush,
and, should you use any drawing calls, you’ll have to W3D_Flush again.

BUGS
Indirect mode: the hardware is internally not locked for
performance reasons, therefore the result might be wrong, if
the corresponding buffer is swapped out.

SEE ALSO

1.70 Warp3D/W3D_WriteZSpan

NAME
W3D_WriteZSpan -- Write a span of z pixels

SYNOPSIS
W3D_WriteZSpan(context, x, y, n, z, mask);

a0 d0 d1 d2 a1 a2

W3D_WriteZSpan(W3D_Context *, ULONG, ULONG, ULONG,
W3D_Double [], UBYTE []);

FUNCTION
Write a span of pixels pointed to by z into the zbuffer.
Writing begins at x,y, n pixels will be drawn. mask points
to an equally sized array of UBYTES. A 0 in the array indicates
that the corresponding z pixel will not be drawn.
This function may only be used while the hardware is locked,
except when indirect drawing is used.

INPUTS
context - a context pointer
x,y - the starting position
n - number of pixels

Warp3D 65 / 65

z - pointer to a span of zpixels
mask - pointer to mask array. May be NULL

RESULT

EXAMPLE

NOTES
This function is primarly intended for OpenGL implementations,
which might need access to the Z buffer. This function
is slow and should normally not be called.

* IMPORTANT NOTE: *
For speed reasons, this call is *NOT* compatible with indirect drawing.
To use this call with indirect mode, you have to manually W3D_Flush,
and, should you use any drawing calls, you’ll have to W3D_Flush again.

BUGS
Indirect mode: the hardware is internally not locked for
performance reasons, therefore the result might be wrong, if
the corresponding buffer is swapped out.

SEE ALSO

	Warp3D
	Warp3D.doc
	Warp3D/W3D_AllocStencilBuffer
	Warp3D/W3D_AllocTexObj
	Warp3D/W3D_AllocZBuffer
	Warp3D/W3D_CheckDriver
	Warp3D/W3D_CheckIdle
	Warp3D/W3D_ClearStencilBuffer
	Warp3D/W3D_ClearZBuffer
	Warp3D/W3D_CreateContext
	Warp3D/W3D_DestroyContext
	Warp3D/W3D_DrawLine
	Warp3D/W3D_DrawLineLoop
	Warp3D/W3D_DrawLineStrip
	Warp3D/W3D_DrawPoint
	Warp3D/W3D_DrawTriangle
	Warp3D/W3D_DrawTriFan
	Warp3D/W3D_DrawTriStrip
	Warp3D/W3D_FillStencilBuffer
	Warp3D/W3D_Flush
	Warp3D/W3D_FlushFrame
	Warp3D/W3D_FlushTextures
	Warp3D/W3D_FreeAllTexObj
	Warp3D/W3D_FreeStencilBuffer
	Warp3D/W3D_FreeTexObj
	Warp3D/W3D_FreeZBuffer
	Warp3D/W3D_GetDestFmt
	Warp3D/W3D_GetDrivers
	Warp3D/W3D_GetDriverState
	Warp3D/W3D_GetDriverTexFmtInfo
	Warp3D/W3D_GetState
	Warp3D/W3D_GetTexFmtInfo
	Warp3D/W3D_Hint
	Warp3D/W3D_LockHardware
	Warp3D/W3D_Query
	Warp3D/W3D_QueryDriver
	Warp3D/W3D_ReadStencilPixel
	Warp3D/W3D_ReadStencilSpan
	Warp3D/W3D_ReadZPixel
	Warp3D/W3D_ReadZSpan
	Warp3D/W3D_ReleaseTexture
	Warp3D/W3D_RequestMode
	Warp3D/W3D_SetAlphaMode
	Warp3D/W3D_SetBlendMode
	Warp3D/W3D_SetColorMask
	Warp3D/W3D_SetCurrentColor
	Warp3D/W3D_SetCurrentPen
	Warp3D/W3D_SetDrawRegion
	Warp3D/W3D_SetDrawRegionWBM
	Warp3D/W3D_SetFilter
	Warp3D/W3D_SetFogParams
	Warp3D/W3D_SetLogicOp
	Warp3D/W3D_SetPenMask
	Warp3D/W3D_SetScissor
	Warp3D/W3D_SetState
	Warp3D/W3D_SetStencilFunc
	Warp3D/W3D_SetStencilOp
	Warp3D/W3D_SetTexEnv
	Warp3D/W3D_SetWrapMode
	Warp3D/W3D_SetWriteMask
	Warp3D/W3D_SetZCompareMode
	Warp3D/W3D_TestMode
	Warp3D/W3D_UnLockHardware
	Warp3D/W3D_UpdateTexImage
	Warp3D/W3D_UpdateTexSubImage
	Warp3D/W3D_UploadTexture
	Warp3D/W3D_WaitIdle
	Warp3D/W3D_WriteStencilPixel
	Warp3D/W3D_WriteStencilSpan
	Warp3D/W3D_WriteZPixel
	Warp3D/W3D_WriteZSpan

